0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Leveraging Normal White Matter Hyperintensity Context for Enhanced Pathological Segmentation via Multi-Class Deep Learning
Authors :
Mahdi Bashiri Bawil
1
Mousa Shamsi
2
Ali Fahmi Jafargholkhanloo
3
Abolhassan Shakeri Bavil
4
1- Tabriz University of Technology (Sahand)
2- Tabriz University of Technology (Sahand)
3- University of Mohaghegh Ardabili
4- Department of Radiology, Imam Reza Hospital Tabriz University of Medical Sciences Tabriz, Iran
Keywords :
White matter hyperintensities (WMH)،deep learning،medical image segmentation،FLAIR MRI،multi-class classification،U-Net،pathological segmentation،neuroimaging
Abstract :
White matter hyperintensities (WMHs) on FLAIR MRI are critical indicators of cerebrovascular dysfunction associated with elevated risks of stroke, dementia, and death. Current automated segmentation methods suffer from false positive detection in periventricular regions, failing to distinguish normal or aging-related hyperintensities from pathologically significant lesions, which reduces clinical applicability and diagnostic accuracy. This study investigates whether training deep learning models to explicitly differentiate between normal and abnormal WMH improves pathological WMH segmentation performance compared to traditional binary approaches. Four state-of-the-art architectures (U-Net, Attention U-Net, DeepLabV3Plus, Trans-U-Net) were evaluated across two training scenarios using 1,974 FLAIR images from 100 MS patients with expert-annotated ground truths. Scenario 1 employed binary training (background vs abnormal WMH), while Scenario 2 utilized three-class training (background, normal WMH, abnormal WMH). Statistical analysis included paired t-tests and Cohen's d effect size calculations. U-Net achieved the most substantial improvement in Scenario 2 with 55.6% increase in Dice coefficient (0.693 vs 0.443) and 131% precision enhancement (p < 0.0001, Cohen's d = 0.971). Traditional CNN-based architectures demonstrated larger effect sizes than transformer-based models. The three-class training approach significantly enhances pathological WMH segmentation while maintaining clinical feasibility, providing a validated framework for improving automated neuroimaging tools' diagnostic utility.
Papers List
List of archived papers
Modulation of EEG Connectivity by Insular Cortex Stimulation: Frequency-Specific Effects and Interoceptive Implications
Ramin Aghili Karampour - Alireza Fallahi - Reza Kazemi
کاربرد هوش مصنوعی در حسابداری
پریسا عابدی - حسین بوداقی خواجه نوبر
شبیه سازی عددی انقباض بطن راست قلب جنین انسان به روش تعامل سیال و جامد
سیده کیمیا مرتضوی فارسانی - هانیه نیرومند اسکوئی - بهروز جعفرزاده - محمد حسن فردوسی
Enhancing Drug–Target Affinity Prediction with Non-Local Block Graph Neural Networks
Reza Tahmasebi - Eghbal Mansoori - Armin Piashehvar - Abbas Mehrbaniyan
ENHANCING POPULATION DIVERSITY AND OPTIMIZATION EFFICIENCY IN CAT SWARM OPTIMIZATION USING A FUZZY CONTROLLER
Seyede maryam Rezaei - Reza Boostani
Dynamic Classification of Resting-State EEG Using Adaptive Functional Connectivity in Mild Traumatic Brain Injury
Farzaneh Manzari - Peyvand Ghaderyan
تأثیر فعالیت های بازاریابی تجربی بر تجربه مشتری در متاورس: نقش واسطه ای سهولت درک شده و سودمندی درک شده و تأثیر آن بر عشق به برند
آیسان خضرلو - سید جعفر زنوزی
بررسی کاربرد تکنیک های هوش مصنوعی در سیستم های توصیه گر
آسیه یاوری - علی اکبر نقابی
Biomechanical Analysis of Blindfold Training for Backward Running in Handball Athletes
Aydin Najipour - Siamak Khorramymehr - Kamran Hassani
افزایش تاب آوری سایبری با تلفیق بلاکچین و هوش مصنوعی: به کارگیری قراردادهای هوشمند جهت جلوگیری از تغییر سطح دسترسی مهاجم در حملات APT
شهرام حاج غنی - فرزانه عبدالرحیمی - زهره ابوالهادی
more
Samin Hamayesh - Version 42.4.6