0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Goniometry and Electromyography Data Analysis for Knee Health Diagnosis using Machine Learning
Authors :
Mohammad-Reza Sayyed Noorani
1
Zahra Mahmoudi Anzabi
2
Sara Sharifi
3
1- University of Tabriz
2- University of Tabriz
3- University of Tabriz
Keywords :
Knee Health Diagnosis،Machine Learning،Feature Extraction،Goniometry،Surface Electromyography
Abstract :
In this study, we employed the Sánchez dataset [1] comprising synchronized knee goniometric measurements and surface electromyography (sEMG) recordings from major knee flexor and extensor muscles to develop a machine learning-based classification system for knee joint health assessment. The dataset included biomechanical data from 11 healthy controls and 11 participants with diagnosed knee pathologies. Our analysis focused only on the data collected during walking trials. Accordingly, training data prepared through kinematic monitoring of knee joint angles and subsequent segmentation of complete gait cycles - from initial heel-strike through terminal swing phase. Thus, we compiled 48 datasets from healthy controls and 173 datasets from participants with knee abnormalities. Each dataset included synchronized sEMG signals from four major muscles (rectus femoris, biceps femoris long head, vastus medialis, and semitendinosus) along with knee goniometry data, all of them were captured through complete gait cycles. Here, various combinations of statistical, temporal, and wavelet features using SVM, LDA, and KNN classifiers for knee health assessment were evaluated. Goniometric data alone achieved the best index with 97.7% accuracy (LDA/SVM models) when incorporating at least one feature from each type. For sEMG signal combinations, optimal performance (93.8% accuracy with LDA) was obtained using solely semitendinosus muscle data with complete feature sets. Comparative analysis revealed wavelet features as the least effective individually, while combined feature sets consistently yielded superior results. The sEMG signals from other individual muscles or their various combinations, regardless of feature selection approach, consistently demonstrated inferior classification performance.
Papers List
List of archived papers
Microfluidic Generation of Core-Shell Breast Tumor Spheroids for Evaluating Dose-Dependent Responses to Quercetin
Fatemeh Zarei - Mohammad Hashem Molayemat - Amir Shamloo - Mohammad Mehdi Sadeghian
Ensemble Learning–Based Surrogate Models for Non-Invasive Estimation of Corneal Mechanical Properties
Seyed Sadjad Abedi Shahri - Mitra Baradari - Iman Zoljanahi Oskui
حریم خصوصی کاربران در مدل های زبانی بزرگ
آرمان محبعلی - محمد عادلی نیا
تاثیر رویکرد حسابداری و مالی بر قضاوت وتصمیم گیری اثر خود هویتی سبز بر تغییر قصدخرید با نقش میانجی ارزش ادراکی و تعدیل کنندگی خودهمسویی ( مورد مطالعه :مشتریان فروشگاه اینترنتی جوپزی)
حسین بوذری
تحلیل بیومکانیکی تعادل ایستایی در جوانان و سالمندان بر روی سطوح پایدار و ناپایدار با استفاده از شاخصهای سینتیکی نیروی واکنشی زمین
فرشته موسوی کنک لو - علیرضا هاشمی اسکویی - شقایق حسن زاده خانمیری
ارتباط بین رفتار سرمایه گذاری و خطر سقوط قیمت سهام
بیتا دلنواز اصغری - لیلا محمدی - بهنام رنجبرالوار - مهدی پورعلی
Comparative Evaluation of Two Keratin Extraction Methods from Kurdish Sheep Wool and Their Application in the Fabrication of Biocompatible Hydrogels with Gelation Time Analysis
Sajjad Pourabdal Nergi - Fatemeh Bagheri - Abbas Sheikh
Modeling Attention Performance Across Female Reproductive Aging Using Logistic Regression
Zahra Zehtabi - Leila Mehdizadeh Fanid - Pedram Salehpoor - Mahdi Jafari Asl
Coronary Full artery segmentation using U-Net neural network architecture
Rezvan Monjezi - Mahdieh Ghasemi - Mahdi Salehi - Alireza Rowhanimanesh - Samaneh Tabaee
تاثیر استقلال کمیته های حسابرسی بر محتوای اطلاعاتی اعلان سود با نقش کیفیت حاکمیت شرکتی در بورس اوراق بهادار تهران
بهزاد مظفری - هاتف ملازاده - رضا عشقی
more
Samin Hamayesh - Version 42.5.2