0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Goniometry and Electromyography Data Analysis for Knee Health Diagnosis using Machine Learning
Authors :
Mohammad-Reza Sayyed Noorani
1
Zahra Mahmoudi Anzabi
2
Sara Sharifi
3
1- University of Tabriz
2- University of Tabriz
3- University of Tabriz
Keywords :
Knee Health Diagnosis،Machine Learning،Feature Extraction،Goniometry،Surface Electromyography
Abstract :
In this study, we employed the Sánchez dataset [1] comprising synchronized knee goniometric measurements and surface electromyography (sEMG) recordings from major knee flexor and extensor muscles to develop a machine learning-based classification system for knee joint health assessment. The dataset included biomechanical data from 11 healthy controls and 11 participants with diagnosed knee pathologies. Our analysis focused only on the data collected during walking trials. Accordingly, training data prepared through kinematic monitoring of knee joint angles and subsequent segmentation of complete gait cycles - from initial heel-strike through terminal swing phase. Thus, we compiled 48 datasets from healthy controls and 173 datasets from participants with knee abnormalities. Each dataset included synchronized sEMG signals from four major muscles (rectus femoris, biceps femoris long head, vastus medialis, and semitendinosus) along with knee goniometry data, all of them were captured through complete gait cycles. Here, various combinations of statistical, temporal, and wavelet features using SVM, LDA, and KNN classifiers for knee health assessment were evaluated. Goniometric data alone achieved the best index with 97.7% accuracy (LDA/SVM models) when incorporating at least one feature from each type. For sEMG signal combinations, optimal performance (93.8% accuracy with LDA) was obtained using solely semitendinosus muscle data with complete feature sets. Comparative analysis revealed wavelet features as the least effective individually, while combined feature sets consistently yielded superior results. The sEMG signals from other individual muscles or their various combinations, regardless of feature selection approach, consistently demonstrated inferior classification performance.
Papers List
List of archived papers
Curcumin-Loaded Carboxymethyl Cellulose/Polyvinyl Alcohol Smart Wound Dressing: A Biosensor Approach for pH-Responsive Monitoring and Healing
Saeid Orangi - Soodabeh Davaran
تحلیل رابطهی مولفههای هوش هیجانی و عملکرد ریاضی در دانشآموزان تیزهوش
سید محمد امین خاتمی
تحلیل مقایسهای طبقهبندهای یادگیری ماشین بر روی مجموعه داده MNIST
متین نهاوندی
شناسایی پیشرانهای حسابداری مسئولیت اجتماعی شرکتی در ایران: بررسی عوامل مؤثر و چالشها
امیر محبی - فرزین رضایی - مهدی بشکوه - غلامرضا کردستانی
تاثیر سوء گیری مالی بر قابلیت مقایسه اطلاعات مالی با تاکید بر کیفیت حسابرسی
ابراهیم نویدی عباسپور - صالح بهروز گجین
Stem cell engineering in tissue repair: A Review of Therapeutic Perspectives
Farnaz Mozayani - Mohammadbagher Kargar
تحول بازاریابی در عصر دیجیتال: نقش کلیدی هوش مصنوعی
علی اکبر شهری مجارشین - علی میرطاهری
آلیاژهای حافظهدار نیکل-تیتانیم در مهندسی پزشکی: نوآوریها، چالشها و کاربردهای پزشکی
مهدیه سلطانعلی پور - میلاد بدر - جعفر خلیل علافی
Plasma Electrolytic Oxidation-Derived HAp–Ta₂O₅ Coatings on Ti6Al4V for Biomedical Applications
Milad Hosseini - Jafar Khalil allafi - Mir saman Safavi
بررسی نقش فناوری هوش مصنوعی در فرآیند ایجاد مدل خدمات دستگاه خودپرداز
سجاد یوسفی - مریم پورنجف - آیدا محمدی - ساحل پرسته
more
Samin Hamayesh - Version 42.4.6