0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Non-Invasive Detection of Atherosclerosis and Aneurysm via Electrical Impedance Spectroscopy: A Finite Element Simulation Study
Authors :
Shaghayegh Shokri
1
Rasool Baghbani
2
Masoomeh Ashoorirad
3
1- Hamedan University of Technology
2- Hamedan University of Technology
3- Hamedan University of Technology
Keywords :
Atherosclerosis،Aneurysm،Cardiovascular Diseases،Finite Element Simulation،Electrical Impedance Spectroscopy،Non-invasive Diagnosis
Abstract :
Atherosclerosis and aneurysm are among the most dangerous and well-known diseases of the cardiovascular system, causing 19.8 million deaths in 2022, of which 85% died due to heart attack or stroke. Therefore, early detection of these conditions can play a significant role in preventing their various complications. In this study, electrical impedance spectroscopy (EIS) was used as a non-invasive method for diagnosing both diseases. The primary objective of this paper is to assess the discriminative capability of EIS between normal tissue, atherosclerotic tissue, and aneurysmal tissue, as well as to investigate how changes in geometric parameters in these two pathological types affect the tissue's impedance response. For this purpose, a three-dimensional model of healthy and diseased tissues was developed using COMSOL software. The results showed that diseased tissues exhibit distinct impedance characteristics compared to normal tissue; Significant increases in electrical impedance are observed in atherosclerosis, while decreases are seen in aneurysm, which are among the identified features. Overall, findings from this study indicate that electrical impedance spectroscopy can be used as a complementary, rapid, cost-effective, and real-time method for detecting both atherosclerosis and aneurysms. Furthermore, accurate numerical modeling can serve as a valuable tool for the initial design of EIS-based diagnostic devices.
Papers List
List of archived papers
نظریه پایداری و ذینفعان: دیدگاه فرآیندی
رعنا شهداور - لیلا مهدیوند - مریم حسن پور
Recent Advances and Open Challenges in Explainable AI for Deep Learning-based Recommender Systems
Narjes Badpar - Azita Shirazipour - Seyed Javad Mirabedini
تاثیر قابلیت مقایسه صورتهای مالی بر مربوط بودن اطلاعات حسابداری
محمد فرجی بنائی - نیما تمجیدی فر - امیرحسین قوچی
مدل ترکیبی مبتنی بر DenseNet، الگوریتم ژنتیک و GAN برای تشخیص آلزایمر از تصاویر MRI
محمد قنبری صباغ - محسن کرمی طلایی
Cancer-Associated Actin Mutations Enhance Cofilin Binding Affinity: Insights from Steered Molecular Dynamics Simulations
Danial Sedighpour - Farzan Ghalichi - Iman Zoljanahi Oskui
شناسایی قدرت پسورد با استفاده از روشهای یادگیری ماشین دسته جمعی
مهناز درودی - سیدحسن مرتضوی زارچ - فاطمه زارع مهرجردی - محسن سرداری زارچی
Document Clustering Using Deep Pre-trained Language Model Embeddings for Information Retrieval
Mahdi Mohammadiha - Mohammad Hassan Sadreddini - Morteza Mohammadi Zanjireh
تاثیر عدم تقارن اطلاعاتی بر ارتباط بین متنوع سازی شرکتی و مالی سازی شرکت
احمد محمدی - سعید سودی - سونیا کیوان بد
Towards Accurate Multimodal Defformable Image Registration via Image Translation and Weak Supervision
Maryam Nasr - Mohammadreza Yazdchi - Mohsen Safdari
کاربرد هوش مصنوعی در حسابداری
پریسا عابدی - حسین بوداقی خواجه نوبر
more
Samin Hamayesh - Version 42.4.6