0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
GPU-Accelerated GRAPPA: A Fast Implementation Using PyTorch for MRI Reconstruction
Authors :
Mehrdad Anvari-Fard
1
Mahdi Bazargani
2
Mohammad Javad Heidari
3
Hamid Soltanian-Zadeh
4
1- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
2- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
3- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
4- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
Keywords :
GRAPPA،MRI Reconstruction،Deep Learning،FastMRI،GPU acceleration
Abstract :
GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) is a widely used algorithm in MRI parallel imaging that reconstructs accelerated MRI scans by estimating the unknown phase-encoding lines omitted during k-space data acquisition. Unlike SENSE (Sensitivity Encoding), which operates in the image domain, GRAPPA directly processes k-space data and offers high reconstruction quality without requiring prior knowledge of coil sensitivity maps, making it one of the most commonly used algorithms for MRI reconstruction in clinical practice. Recent MRI reconstruction trends increasingly combine classical methods with deep learning, either as end-to-end trainable networks or hybrid pipelines that use physics-based operators within learning frameworks. GRAPPA is often employed as a preprocessing step before feeding slice information into deep learning models for MRI reconstruction. Despite its effectiveness, GRAPPA is typically a time-consuming part of the training process. In this work, we leverage the GPU capabilities of the PyTorch library and employ several optimization techniques to accelerate the GRAPPA algorithm. Our implementation is compared against the PyGRAPPA repository, developed by Nicholas McKibben, using a subset of the NYU fastMRI dataset. The results demonstrate that our optimized implementation achieves more than 40-fold speedup, which is statistically significant (p < 0.01) while maintaining equivalent image quality with no significant differences in reconstruction metrics (p > 0.05).
Papers List
List of archived papers
مروری بر روشهای پیشبینی رفتار کاربران در فضای مجازی
امیرحسین شعیبی - مجید عبدالرزاق نژاد
محاسبه نیروی عضلانی اندام تحتانی و نیروی تماسی مفصل زانو در بیماران مبتلا به استئوآرتریت زانو
مجتبی صفری - محمد نجفی آشتیانی - فاطمه السادات علوی
Modifying the electricity consumption pattern by designing an intelligent machine learning model with the XG Boost algorithm
Raha Pakzad
اصول سرمایه گذاری پایدار در شهرداری ها
بهرام مظفر
کاربردهای الگوریتم فراابتکاری ماهی پاککننده در اینترنت اشیا
زهرا ترتیبیان - علی اکبر نقابی
تحلیل پارامترهای کلیدی مؤثر در شکست پچ چسبنده ترمیمی تاندون روتاتورکاف با مدلسازی اجزای محدود
شقایق راست قلم - آزاده قوچانی - محسن صراف بید آباد
Predicting employee loyalty based on machine learning algorithms,Case study: Pars Online Company Call Center
Mohammad Reza Haji-Ahmadi - Mohammad-Ali Eghbali - Hossein Eghbali
Multi-transform diagnostic analysis based on gradient-based features for breast cancer detection in thermal imaging
Ainaz Daneshdoust - Sedigheh Ghofrani - Mahdi Eslami - Iman Ahanian
Simulation and evaluation of the impact of magnetic source geometry on mechanical stress and magnetic flux distribution in cancerous tumors
Alireza Heydari - Mahdi Halabian - Borhan Beigzadeh - Majid Siavashi
In-silico Molecular Investigation of Caloubater crescentus Bioadhesive Proteins
Yeganeh Kayalha - Maryam Azimzadeh Irani
more
Samin Hamayesh - Version 42.4.6