0% Complete
فارسی
Home
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
A Comprehensive Review of Deep Learning Integration in Recommender Systems: Taxonomy, Challenges, and Future Directions
Authors :
Saba Kheirkhah Kheirabadi
1
Dr. Azita Shirazipour
2
Dr.Seyed Javad Mirabedini
3
1- Department of Computer, CT.C., Islamic Azad University, Tehran, Iran
2- Department of Computer, CT.C., Islamic Azad University, Tehran, Iran
3- Department of Computer, CT.C., Islamic Azad University, Tehran, Iran
Keywords :
Deep Learning،Recommender Systems،Graph Neural Networks،AutoML،Contrastive Learning،Personalization،Fairness،Federated Learning،LLMs،Multi-Modal Fusion
Abstract :
The integration of deep learning (DL) into recommender systems (RS) has significantly reshaped how personalized content is generated and delivered across diverse domains. Traditional recommendations such as collaborative filtering and content-based filtering struggle to cope with the increasing complexity, diversity, and sparsity inherent in modern user-item data. DL techniques, however, can learn rich, non-linear mappings from multi-modal and large-scale data inputs. This is a comprehensive survey that synthesizes the outcome of 40 peer-reviewed papers published in the time period 2023–2025 to provide a fine-level taxonomy of DL architectures like CNNs, RNNs, Transformers, GNNs, and Autoencoders with multimodal and hybrid architectures. We categorize and compare and contrast these models in terms of methodology, application area (e.g., healthcare, academia, streaming media, e-commerce), and key challenge areas like cold-start, scalability, interpretability, and fairness. Furthermore, this paper advocates for an integrated pipeline through AutoML, federated learning, and pretraining with contrast to overcome the barriers related to personalization, privacy, and versatility. Through state-of-the-art model benchmarking and future trends such as LLM-based personalization and ethics-aware design, this survey not only recapitulates latest progress but also charts the future direction to the next generation of trustworthy and intelligent recommender systems.
Papers List
List of archived papers
شناسایی محرکهای گزارشگری پایداری مبتنی بر تئوری مشروعیت
مجید باباخانی - نبی نجفی - سعید صمیمی
طبقه بندی بیماران پارکینسون و افراد سالم با بهره گیری از ویژگیهای غیرخطی و الگوریتم های یادگیری ماشین
محمد جواد عبدی - پریا شکری - امیرحسین تجرد - تانیا حسین خانی - اصغر زارعی
مروری برنقش اخلاق در حسابداری و مسئولیت اجتماعی شرکتها
حیدر محمدزاده سالطه - سولماز پورسعدی
تاثیر قدرت مدیر عامل بر کیفیت گزارشگری مالی
یعقوب پور کریم - میلاد حبیب اللهی - ابوالفضل بخشی قیسناب
Finite Element Analysis of Mechanical Stability in Hip Joint Implants: A Comparative Study of Ti-6Al-4V and Ti-13Nb-13Zr Alloys
Mohammad Amin Parsaei Tashi - Mohammad Hagh Panahi
تاثیر هوش مصنوعی بر تغییرات سیاست های مالی: چالش ها و فرصت ها
بهارک یادگار جمشیدی - جمال سبک دستی - زینب رضائی - امین مقتدری
نقش هوش مصنوعی در تحول تجارت الکترونیک: مروری بر روشها و چالشها
الهام آزادی مرند
Skin Thermomechanical Modeling: Assessing the Influence of Water and Ambient Air
Pezhman Namashiri - Akbar Allahverdizadeh - Fatemeh Khodadoost - Farid Vakili-Tahami
Investigation of the presence of movement intention during sequential hand movements using neurophysiological analyses of EEG signals
Elnaz Eilbeigi
Unsupervised Gait Anomaly Detection Using Generative Adversarial Networks: A Feasibility Study
Seyed Hooman Hosseini-Zahraei - Ali Chaibakhsh
more
Samin Hamayesh - Version 42.5.2