0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Unsupervised Gait Anomaly Detection Using Generative Adversarial Networks: A Feasibility Study
Authors :
Seyed Hooman Hosseini-Zahraei
1
Ali Chaibakhsh
2
1- Intelligent Systems and Advanced Control Lab, Faculty of Mechanical Engineering, University of Guilan
2- Faculty of Mechanical Engineering, University of Guilan
Keywords :
Gait Analysis،Gait Analysis،Generative Adversarial Networks (GAN)،Unsupervised Learning،Wearable Sensors،Feasibility Study
Abstract :
Anstract: The automated classification of human gait, a critical indicator of neuromuscular health, is often hindered by the dependency of supervised machine learning on extensive labeled pathological datasets, which are scarce and difficult to obtain. This paper explores the feasibility of a paradigm towards unsupervised learning, proposing a framework based on a Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP). The WGAN-GP is trained exclusively on healthy gait patterns from a single young subject's shank-mounted Inertial Measurement Unit (IMU) to build a model of healthy movement. The framework utilizes a reconstruction-based anomaly detection strategy, where abnormalities are quantified by the magnitude of error when attempting to reconstruct a new gait cycle from the learned healthy model. Evaluated using real-world data from healthy subjects (both young and old) and individuals with Parkinson's disease, the model demonstrated strong performance, achieving an Area Under the Curve (AUC) of 0.96. Notably, the framework also showed sensitivity to non-pathological, age-related gait variations. This feasibility study provides compelling evidence for the efficacy of WGAN-GP-based unsupervised detection as a data-efficient and generalizable alternative, paving the way for future validation on larger clinical datasets to characterize mobility impairments across various disorders and age groups.
Papers List
List of archived papers
تحلیل نقش هوش مصنوعی در تحول بازرگانی و مدیریت زنجیره تأمین: مطالعهی موردی گروه صنعتی مپنا
حسین بوذری
Prediction of cardiac arrhythmia via an improved hierarchical fused fuzzy deep learning
Arman Daliri - Nora Mahdavi
تاثیر هوش مصنوعی بر مدیریت منابع انسانی در صنعت
بهارک یادگار جمشیدی - آرزو صدری - عطا سید بادامی
هوش مصنوعی و مدیریت مالی و سرمایه
محمد ملکی
بررسی کارایی و اثربخشی عملیاتی بانکهای پذیرفتهشده در بورس اوراق بهادار تهران با سنجههای ارزش افزوده بازار و بازده سرمایهگذاری
محمد جعفری
شناسایی خودکار حملات روز صفر با رویکرد چندفازی در تولید امضاهای Snort
مازیار کریمی - سعید مهرجو
Application of Attention Mechanisms in Deep Learning Models for COVID-19 Detection and Classification from Medical Images: A Systematic Review
Jafar Abdollahi - Babak Nouri-Moghaddam - Abbas Mirzaei
شناسایی رابطه غیرخطی بین قدرت سیگنال و مصرف باتری در کنتورهای هوشمند آب با استفاده از XGBoost
محمد رستمی - فضل الله ادیب نیا
مروری بر روشهای پیشبینی رفتار کاربران در فضای مجازی
امیرحسین شعیبی - مجید عبدالرزاق نژاد
Optimization of an Integrated Filter Photometric system and a Centrifugal Microfluidic System for Biochemical Analysis
Bahareh Mohammadi Jobani - Amin Dehghan - Zahra Shahsavari - Esmail Pishbin
more
Samin Hamayesh - Version 42.5.2