0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Automated Tibial Bone Segmentation using 2D Swin-Unet on Knee X-ray Images
Authors :
Ali Kazemi
1
Abolfazl Zamanirad
2
Soodabeh Esfandiary
3
Ebrahim Najafzadeh
4
Mohammad Hossein Nabian
5
Parastoo Farnia
6
Alireza Ahmadian
7
1- دانشگاه علوم پزشکی تهران
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی تهران
4- دانشگاه علوم پزشکی ایران
5- دانشگاه علوم پزشکی تهران
6- دانشگاه علوم پزشکی تهران
7- دانشگاه علوم پزشکی تهران
Keywords :
Tibial Plateau Fracture،Medical Image Segmentation،Swin-Unet،X-ray Imaging،Deep Learning
Abstract :
Tibial plateau fractures (TPFs), which account for approximately 1% of all bone fractures, represent a complex subset of knee injuries with significant clinical implications if not accurately diagnosed and managed. The accurate diagnosis of TPFs from radiographs is challenged by subtle fracture lines and significant inter-observer variability in manual segmentation. To address these limitations, this study evaluates the performance of a Transformer-based deep learning model, Swin-Unet, for automated and precise tibial segmentation. A retrospective dataset comprising 958 anterior-posterior and lateral radiographs from 220 patients with TPFs was curated. Ground truth masks of the tibia bone were manually annotated and validated through a multi-stage review by orthopedic surgeons. Following preprocessing steps, including contrast enhancement with Contrast Limited Adaptive Histogram Equalization (CLAHE), a 2D Swin-Unet architecture featuring patch-based self-attention mechanisms was trained. The optimized Swin-Unet model demonstrated high fidelity, achieving a mean Dice Similarity Coefficient (DSC) of 0.8314, a mean Intersection over Union (IoU) of 0.7374, and an overall accuracy of 0.9735 on the validation set. Qualitative analysis confirmed the model's ability to accurately delineate tibial boundaries. In conclusion, this study validates the Swin-Unet model as a robust and efficient framework for automated tibial segmentation. By mitigating the challenges of manual delineation, this approach holds significant promise for improving the consistency of orthopedic diagnostic workflows. It serves as a foundation for AI-driven clinical decision support in musculoskeletal imaging.
Papers List
List of archived papers
Fuzzy Estimator of the Soleus Activation during Heel-raising Motion using OpenSim–MATLAB
Mohammad-Reza Sayyed Noorani - Roghaiyeh Ahmadian Sarand - Nakisa Farshforoush
Comparative Analysis of Time-Frequency Representations for Pediatric Respiratory Sound Classification Using Deep Learning
Ghazaleh Shiri - Hanieh Bahrami - Alireza Fallahi
پذیرش فناوری هوش مصنوعی در بین کارکنان واحدهای مالی و حسابداری در صنعت خدمات اشتراکی
زهرا اسمی - معصومه جعفری - فرهاد جباری متین
Programmable Flow Control in Rotating Microfludic Systems using elastic patch valves
Zohreh Mohammadi Zadeh - Amin Dehghan - Esmail Pishbin - Mahdi Navidbakhsh
امنیت در سیستمهای توزیعشده: مقایسه رایانش ابری با فناوریهای سنتی و راهکارهای هوشمند مقابله با تهدیدات نوظهور
بهنام محمدلو - امین بابازاده سنگر
EJES: A Diverse Estimator Bank Framework for High-Resolution EEG/MEG Source Localization
Reza Khajehsarvi - Sayed Mahmoud Sakhaei - Sadegh Jamshidpour
Grating Lobe Suppression in Sparse Coprime Array Ultrasound Imaging by Null Alignment
Mina Ezati - Vahid AminNilii - Zahra Kavehvash
Gravity-Directed Growth of ZnO Nanorods: Morphological Control via Chemical Bath Deposition
Masoud Ghashami - Melisa Daryayi - Mohammad Abdolahad
جایگاه هوش مصنوعی در آینده اقتصاد ایران
سید کمال صادقی - فاطمه نمازی - هانیه پور مهدی
Emotion Recognition from EEG signal using GA-FLANN with Whale Optimization Algorithm
Mohammadamir Razmi - Pouya Faridfar - Seyed Amirreza Navali Hosseini alavi
more
Samin Hamayesh - Version 42.4.6