0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Authors :
Ehsan Karami
1
Hamid Soltanian-Zadeh
2
1- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
2- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
Keywords :
knee osteoarthritis،deep learning،medical image analysis،MRI،total knee replacement prediction،model generalization
Abstract :
Knee osteoarthritis (KOA) is a common joint disease that causes pain and mobility issues. While MRI-based deep learning models have demonstrated superior performance in predicting total knee replacement (TKR) and disease progression, their generalizability remains challenging, particularly when applied to imaging data from different sources. In this study, we show that replacing batch normalization with instance normalization, using data augmentation, and applying contrastive loss improves generalization. For training and evaluation, we used MRI data from the Osteoarthritis Initiative (OAI) database, considering sagittal fat-suppressed intermediate-weighted turbo spin-echo (FS-IW-TSE) images as the source domain and sagittal fat-suppressed three-dimensional (3D) dual-echo in steady state (DESS) images as the target domain. The results demonstrated a statistically significant improvement in classification metrics across both domains by replacing batch normalization with instance normalization in the baseline model, generating augmented input views using the Global Intensity Non-linear (GIN) augmentation method, and incorporating a supervised contrastive loss alongside the classification loss to align representations of samples with the same label. In the source domain, this approach achieved an accuracy of 74.12 ± 2.90, an F1 score of 74.57 ± 3.33, and a ROC AUC of 80.65 ± 2.83, outperforming the baseline model, which scored 71.29 ± 4.43, 69.76 ± 4.58, and 77.79 ± 4.66, respectively. In the target domain, the method achieved an accuracy of 70.04 ± 2.49, F1 score of 67.30 ± 3.57, and ROC AUC of 78.12 ± 1.97, compared to the baseline’s 52.87 ± 3.17, 18.98 ± 16.89, and 59.33 ± 6.20. The GIN method with contrastive loss performed better than all evaluated single-source domain generalization methods when using 3D instance normalization. Comparing GIN with and without contrastive loss (for both normalization types) showed that adding contrastive loss consistently led to better performance.
Papers List
List of archived papers
Antimicrobial and Bioactivity Evaluation of Laser-Modified Biodegradable Magnesium Alloy Coated with Chitosan–Graphene Oxide
Seyed Alireza Ensaniat - Ali Safary - Farid Naeimi - Hamid Reza Bakhsheshi Rad - Monireh Ganjali
رویکردهای مبتنی بر هوش مصنوعی برای تشخیص تقلب مالی
مهدیه نامی بسیط - شبنم بالازاده قره باغی - مهدی نامی بسیط
Finite Element Analysis of Lumbar Spine Biomechanics Following Cement Augmentation with Different PMMA Volumes: A Comparison with Intact Spine
Reihane Yazdani - Mohammdjavad (Matin) EinaAfshar - Azadeh Ghoochani - Nima Jamshidi
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
Mahdiyeh Tofighi Milani - Sina Shamekhi - Asghar Zarei
ارتباط بین کیفیت حسابرسی و مالی سازی شرکت
محمد ملکی
بررسی تأثیر هوش مصنوعی بر استراتژیهای بازاریابی در کسبوکارهای الکترونیک در ایران
مریم ذاکریبرنطین - هادی اسماعیلی درمیان
بررسی رابطه سیاست های تامین مالی شرکت و عملکرد شرکت بر افشای ریسک در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
بهاره فضلی
تحلیل پارامترهای کلیدی مؤثر در شکست پچ چسبنده ترمیمی تاندون روتاتورکاف با مدلسازی اجزای محدود
شقایق راست قلم - آزاده قوچانی - محسن صراف بید آباد
Evaluation of Primary Stability of Dental Implants in Synthetic and Natural Bone A Comparative Study
Mahdi Farrokhi Kashtiban - Gholamreza Rouhi
طراحی زنجیره تأمین سبز با رویکرد هوش مصنوعی و سیاستهای ESG
علیرضا فولاد - سبحان معارفوند - حسین پورابراهیم گیل کلایه - علی ایل سعادتمند
more
Samin Hamayesh - Version 42.5.2