0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Investigating the impact of arm swing on lower limb forces using machine learning techniques
Authors :
Mohammad Reza Seidgar
1
Hadi Farahani
2
Mostafa Rostami
3
Elham Naziri
4
Sadegh Madadi
5
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
5- دانشگاه صنعتی امیرکبیر
Keywords :
Arm Swing،Lower Limb،Force،Machine Learning
Abstract :
Introduction: Arm swing is a key component of gait mechanics, influencing joint stability, muscle forces, and locomotion efficiency. Understanding this relationship involves biomechanical complexity. This study investigates how different arm swing amplitudes affect lower limb muscle forces during walking. Methods: Motion capture data were collected from 20 healthy participants, with arm swings categorized as large (LA), normal (NA), and small (SA). Muscle force data for 41 muscles were analyzed using OpenSim software. Two approaches were used for classification: (1) statistical feature extraction with machine learning (ML) classifiers (logistic regression, SVM, decision tree, random forest, and XGBoost) and (2) time-series analysis using dynamic time warping (DTW) with weighted K-NN. Clustering was also performed using algorithms such as OPTICS, Hebbian learning, DBSCAN, SOM, BIRCH, and agglomerative clustering after applying Fourier Transform. Results: The best classification performance in the (LA-NA)-SA scenario was achieved by SVM and logistic regression, both reaching 98% accuracy. The DTW-based weighted K-NN approach achieved 84% accuracy. Clustering results showed the highest agreement in the (LA-NA)-SA scenario, with the Hebbian learning model achieving a silhouette score of 0.5 and ARI, AMI, and FMI values of 0.44, 0.52, and 0.69, respectively. Discussion: The results suggest that lower limb muscle force patterns are similar in normal and high arm swing ranges, while low arm swing produces distinct patterns, indicating increased muscular effort. Classification and clustering results were consistent and reinforced each other. Conclusion: This study contributes to the understanding of the importance of arm swing in gait mechanics, with implications for rehabilitation and ergonomic design. The integration of motion capture systems with ML models offers a novel and effective approach to human movement analysis.
Papers List
List of archived papers
Investigating the impact of arm swing on lower limb forces using machine learning techniques
Mohammad Reza Seidgar - Hadi Farahani - Mostafa Rostami - Elham Naziri - Sadegh Madadi
کاربرد داربست زیستی سهبعدی در مدلسازی in vitro فیبروز کبدی ناشی از NAFLدرموش سوری نر نژاد C57BL/6
حدیثه شکری - امید وجدان دوست اهرابی
محاسبات کوانتومی در عمل: از تئوری تا پیادهسازی تجاری
محمد عادلی نیا
بهرهگیری از هوش مصنوعی و یادگیری عمیق در پیشبینی خطا و عیبیابی تجهیزات صنعتی
سحر پاسیار - سید محمدتقی موسوی قهفرخی - نسرین اشرفی باباگنجه - صبا شاکر
بررسی تاثیر خدمات حسابرسی برکیفیت گزارشگری مالی با تاکید بر نقش حسابرسان دارای تخصص حسابداری
امیر اقاعلی زاده دارانداشی - فاطمه صمدی
بررسی ارتباط بین کیفیت حسابرسی و عدم شفافیت اطلاعات با هزینه سرمایه
سمیه فرهادی - محمد رستمی
خطرات احتمالی در طراحی و تجزیه و تحلیل سیستمهای حسابداری و راهکارهای مقابله با آن
علی نمازیان - آرزو رضایی حومدینی
ENHANCING POPULATION DIVERSITY AND OPTIMIZATION EFFICIENCY IN CAT SWARM OPTIMIZATION USING A FUZZY CONTROLLER
Seyede maryam Rezaei - Reza Boostani
نقش هوش مصنوعی در مزیت رقابتی با نقش میانجی استراتژی های بازاریابی
امین سلطانی
تاثیر هوش مصنوعی بر توسعه اقتصادی
سعید انور خطیبی - مهنا پیرایه جو
more
Samin Hamayesh - Version 42.5.2