0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Investigating the impact of arm swing on lower limb forces using machine learning techniques
Authors :
Mohammad Reza Seidgar
1
Hadi Farahani
2
Mostafa Rostami
3
Elham Naziri
4
Sadegh Madadi
5
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
5- دانشگاه صنعتی امیرکبیر
Keywords :
Arm Swing،Lower Limb،Force،Machine Learning
Abstract :
Introduction: Arm swing is a key component of gait mechanics, influencing joint stability, muscle forces, and locomotion efficiency. Understanding this relationship involves biomechanical complexity. This study investigates how different arm swing amplitudes affect lower limb muscle forces during walking. Methods: Motion capture data were collected from 20 healthy participants, with arm swings categorized as large (LA), normal (NA), and small (SA). Muscle force data for 41 muscles were analyzed using OpenSim software. Two approaches were used for classification: (1) statistical feature extraction with machine learning (ML) classifiers (logistic regression, SVM, decision tree, random forest, and XGBoost) and (2) time-series analysis using dynamic time warping (DTW) with weighted K-NN. Clustering was also performed using algorithms such as OPTICS, Hebbian learning, DBSCAN, SOM, BIRCH, and agglomerative clustering after applying Fourier Transform. Results: The best classification performance in the (LA-NA)-SA scenario was achieved by SVM and logistic regression, both reaching 98% accuracy. The DTW-based weighted K-NN approach achieved 84% accuracy. Clustering results showed the highest agreement in the (LA-NA)-SA scenario, with the Hebbian learning model achieving a silhouette score of 0.5 and ARI, AMI, and FMI values of 0.44, 0.52, and 0.69, respectively. Discussion: The results suggest that lower limb muscle force patterns are similar in normal and high arm swing ranges, while low arm swing produces distinct patterns, indicating increased muscular effort. Classification and clustering results were consistent and reinforced each other. Conclusion: This study contributes to the understanding of the importance of arm swing in gait mechanics, with implications for rehabilitation and ergonomic design. The integration of motion capture systems with ML models offers a novel and effective approach to human movement analysis.
Papers List
List of archived papers
همآوایی در شبکهای جهانکوچک و متشکل از نورونهای ممریستوری
محمدمهدی شیرزاد - مهتاب مهراب بیک - سجاد جعفری
نقش یادگیری عمیق در توسعه هوش مصنوعی و کاربردهای آن در صنعت، تجارت و زنجیره تأمین
آیدا مهرنیا
Binary Discrete Emotion Detection with Peripheral and Fp1-Fp2 EEG Signals on PEEFS Dataset
Fatemeh Shalchizadeh - Sina Shamekhi - Mahdi Jafari Asl
The Technological Pillars of Smart Hospitals: A 2022–2025 Review of IoMT, Wearables/RTLS/RFID, Robotics (IoRT), and VR/AR
Ali Karaminejad - Naeme Kadkhodai Eliaderani - Sahar Jafari - Mahdi Jafari Asl
Deep Learning Approaches for Alzheimer’s Disease Diagnosis: A Comprehensive Review
Mahdi Jafari Asl - Saba Haji Molla Rabie
بررسی ارتباط بین ریسک پذیری شرکت و ضریب واکنش سود در شرکت های پذیرفته شده در بورس اوراق بهادار تهران
حسین بوداقی خواجهءنوبر - مینا محمدی
راهبرد تجاری و رفتار نامتقارن هزینهها با تاکید بر نقش توانایی مدیریتی شواهدی از شرکتهای پذیرفته شده بورس اوراق بهادار تهران و مسقط
علی انصاری - مهدی بشکوه
A Comparative Analysis of CNN Architectures for Histopathology Image Classification: Performance, Efficiency, and Adversarial Robustness
Moein Akbari Shahpar - Mohsen Akbari-Shahpar
استفاده از یادگیری انتقالی در پاسخ به کمبود طیف در تشخیص بیماری با طیف سنجی رامان
آرام زندی - زهره دهقانی بیدگلی
شناسایی و اولویت بندی موانع اجرای حسابداری منابع انسانی بوسیله TOPSIS
حسن پاکی
more
Samin Hamayesh - Version 42.4.6