0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Feature-Conditioned WGAN for Generating Alzheimer’s EEG: Enabling GAN-Based Synthesis Under Data Scarcity
Authors :
Parsa Bahramsari
1
Alireza Taheri
2
1- Social and Cognitive Robotics Lab, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
2- Social and Cognitive Robotics Lab, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
Keywords :
Alzheimer’s disease،Electroencephalography،Conditional Wasserstein GAN،Feature matching،Synthetic data generation
Abstract :
Alzheimer’s disease (AD) significantly impairs cognitive function, making early detection and personalized care crucial. Electroencephalography (EEG) provides a non-invasive, low-cost window into cortical oscillations and is sensitive to AD-related spectral slowing and reduced temporal complexity. However, acquiring high-quality EEG data is often limited by factors such as patient fatigue, session variability, and logistical challenges, especially in environments like socially assistive robots (SARs). These constraints make it difficult to gather sufficient data for training reliable deep models for AD detection. To address this challenge, we propose a feature-conditioned Wasserstein generative adversarial network (fc-WGAN) that generates class and subject specific EEG segments from minimal training data. We first analyze a broad set of time-domain and frequency-domain EEG features to identify those most discriminative between AD and cognitively normal groups. Notably, features like nonlinear energy and band powers consistently demonstrate high separability. fc-WGAN aligns the mean and variance of these features between real and generated EEG batches, enhancing physiological realism and class consistency. Starting from only 200 overlapping 3-second segments per subject, our method improves EEGNet classification accuracy from 87.5±4.5% to 96.2±4.4% by effectively augmenting the training dataset. These results underscore the power of feature-aligned generation in overcoming data scarcity and demonstrate the practical utility of fc-WGAN for SAR-based cognitive assessment and early AD detection in real-world settings.
Papers List
List of archived papers
مروری بر کاربرد هوش مصنوعی در شبکه های اجتماعی، فرصتها و چالش ها
سیدمحمد بیدکی - رضا آذربان - فاطمه بشارتی
Comparative Analysis of Time-Frequency Representations for Pediatric Respiratory Sound Classification Using Deep Learning
Ghazaleh Shiri - Hanieh Bahrami - Alireza Fallahi
کاربرد پردازش زبان طبیعی در مدلسازی و پیش بینی رفتار خرید آنلاین مصرف کننده
حمیده سیفی شجاعی - مرتضی محمودزاده - حسین بوداقی خواجه نوبر - ناصر فقهی فرهمند
تاثیر پیچیدگی وظیفه بر عملکرد حسابرسان با تأکید بر جنبه های فردی و معنوی
حیدر محمدزاده سالطه - هانیه کریم زاده
تاثیر قدرت مدیر عامل بر کیفیت گزارشگری مالی
یعقوب پور کریم - میلاد حبیب اللهی - ابوالفضل بخشی قیسناب
Predictive Modeling of Astronaut Skin Microbiome Changes Using Machine Learning on NASA Multi-Omics Data
Mahdi Ansari - Abolfazl Hajihashemi - Mohammad Rafienia
طراحی ربات نرم پوشیدنی مچ پا با کنترل پیشبین مدل برای توانبخشی پس از سکته
امیرحسین اختراعی طوسی - یگانه خراشادی زاده
Addressing Class Imbalance Using Difficulty-based Oversampling with Variance Control
Zahra Asgharzadeh Bonab - Sina Shamekhi
Fixed-Frequency Impedimetric Detection of Sickle Cells Using Interdigitated Electrodes
َArezoo Savlani - Mobina Ghanbari - Mohammadjavad Bouloorchi Tabalvandi - Majid Badieirostami
مسئولیت پذیری اجتماعی شرکت : بررسی و ترکیب نظریه ها
رعنا شهدآور - علی دلجوان اکبری - محمد زکی لو
more
Samin Hamayesh - Version 42.5.2