0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Feature-Conditioned WGAN for Generating Alzheimer’s EEG: Enabling GAN-Based Synthesis Under Data Scarcity
Authors :
Parsa Bahramsari
1
Alireza Taheri
2
1- Social and Cognitive Robotics Lab, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
2- Social and Cognitive Robotics Lab, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
Keywords :
Alzheimer’s disease،Electroencephalography،Conditional Wasserstein GAN،Feature matching،Synthetic data generation
Abstract :
Alzheimer’s disease (AD) significantly impairs cognitive function, making early detection and personalized care crucial. Electroencephalography (EEG) provides a non-invasive, low-cost window into cortical oscillations and is sensitive to AD-related spectral slowing and reduced temporal complexity. However, acquiring high-quality EEG data is often limited by factors such as patient fatigue, session variability, and logistical challenges, especially in environments like socially assistive robots (SARs). These constraints make it difficult to gather sufficient data for training reliable deep models for AD detection. To address this challenge, we propose a feature-conditioned Wasserstein generative adversarial network (fc-WGAN) that generates class and subject specific EEG segments from minimal training data. We first analyze a broad set of time-domain and frequency-domain EEG features to identify those most discriminative between AD and cognitively normal groups. Notably, features like nonlinear energy and band powers consistently demonstrate high separability. fc-WGAN aligns the mean and variance of these features between real and generated EEG batches, enhancing physiological realism and class consistency. Starting from only 200 overlapping 3-second segments per subject, our method improves EEGNet classification accuracy from 87.5±4.5% to 96.2±4.4% by effectively augmenting the training dataset. These results underscore the power of feature-aligned generation in overcoming data scarcity and demonstrate the practical utility of fc-WGAN for SAR-based cognitive assessment and early AD detection in real-world settings.
Papers List
List of archived papers
چالشها و فرصتهای نگارش و فرایند داوری مقالات با هوش مصنوعی
مرضیه باباشپور اصل
Argeted Cancer Treatment Through Tissue Engineering and Biomaterial-Based Drug Delivery Systems:
Laleh Etemad-Ghazani - Mina Saddi-Khelejan - Mahdi Hasanpour
یادگیری تبدیل تصویر به کمک شبکههای مولد تخاصمی
امیر خاکپور
جایگاه فنآوریهای مبتنی بر هوش مصنوعی در برنامه ریزی آموزشی با تاکید بر اهداف برنامه ششم توسعه
سونیا پیشکار - ثریا غلامحسین پور انوری
An AI-Assisted Approach to Patient-specific 3D Modeling and Stress Analysis of the Temporomandibular Joint from CBCT Images
MOHAMMAD Akhlaghi - Masoud Shariat panahi - Sina Salehpour - Morad Karimpour - Hadi Ghatan Kashani
ارتباط بین اطمینان بیش از حد مدیرعامل و خطر اخلاقی
عیسی ابیضی
کاربرد EEG در تحلیل واکنشهای مشتریان صنعتی (B2B Neuromarketing)
علی نظیری فیروز سالاری - علی قهرمانی
طراحی مدل توزیع ناب - کلاس جهانی در صنعت برق ایران
رکسانا رادمنشی
Recent Advances and Open Challenges in Explainable AI for Deep Learning-based Recommender Systems
Narjes Badpar - Azita Shirazipour - Seyed Javad Mirabedini
Experimental Framework for Quantifying Muscle Force-Length Behavior in Dynamic Exercise
Erfan Farahani - Manizheh Zakeri - Mohammad-Reza Sayyed Noorani
more
Samin Hamayesh - Version 42.4.6