0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Development of an Explainable Random Forest-Based Algorithm for EEG-Based Sleep–Wake Classification Toward Sleep Apnea Detection
Authors :
Pargol Sharifi
1
Mohammad Fakharzadeh
2
1- دانشگاه صنعتی شریف، تهران، ایران
2- دانشگاه صنعتی شریف، تهران، ایران
Keywords :
Polysomnography،EEG signal،Sleep stage classification،Sleep apnea detection،Random Forest،Machine learning
Abstract :
Automatic sleep stage classification allows separating sleep stages without human experts. Many existing algorithms rely on multi-channel physiological signals such as EEG, EOG, and EMG. However, because of the complex equipment and required expertise, these methods usually need specialized laboratory settings. Therefore, developing a high-accuracy classification algorithm using a single signal remains a key challenge in sleep research, as it could enable portable devices and home-based sleep monitoring systems. Sleep stage classification is essential for detecting and managing sleep disorders such as sleep apnea. This study presents an optimized and clinically interpretable pipeline for sleep stage classification and apnea detection using EEG signals. The proposed approach is based on a simple, interpretable Random Forest framework and is intended to serve as a valuable tool for both clinical and research-oriented applications in sleep apnea detection. It integrates optimized preprocessing, data cleaning, algorithmic optimization, and class balancing to enhance accuracy and interpretability. Notably, our optimized Random Forest pipeline outperforms more complex deep-learning models, especially on 6-class sleep staging, sleep–wake discrimination and Apnea detection. The proposed method achieved accuracy, sensitivity, and specificity of 99.68%, 97.59%, and 99.30%, respectively, for distinguishing sleep from wakefulness, and 87.18%, 85.19%, and 89.16%, respectively, for apnea detection.
Papers List
List of archived papers
بررسی تأثیر اطلاعات محیطی شرکت و ریسک عدم بازپرداخت بدهیها بر ریسک سقوط قیمت سهام با توجه به نقش تعدیلگر بحران کمآبی
زهره حاجیها - شهرام کامکار
مروری بر روشهای پیشبینی رفتار کاربران در فضای مجازی
امیرحسین شعیبی - مجید عبدالرزاق نژاد
An AI-Assisted Approach to Patient-specific 3D Modeling and Stress Analysis of the Temporomandibular Joint from CBCT Images
MOHAMMAD Akhlaghi - Masoud Shariat panahi - Sina Salehpour - Morad Karimpour - Hadi Ghatan Kashani
Argeted Cancer Treatment Through Tissue Engineering and Biomaterial-Based Drug Delivery Systems:
Laleh Etemad-Ghazani - Mina Saddi-Khelejan - Mahdi Hasanpour
مروری بر کاربرد الگوریتمهای یادگیری عمیق و یادگیری تقویتی در پیشبینی روند بازارهای مالی
سید محمد مشگ فروش - فرزانه کاویانی باغبادرانی
حسابداری سبز
لیلا کاتب - مبینا قدسی - ثنا کامکار
Injectability Enhancement and Optimization of a Biphasic Calcium Phosphate Bone Cement
Sepehr Larijani - Mitra Asadi-Eydivand - Nabiollah Abolfathi - Mehran Solati-Hashjin
Multi-Modal Brain Tumor Diagnosis via Hybrid Vision Transformers and CNNs: A Deep Learning Approach
Alireza Haghighatjoo - Fatemeh Noori - Peyman Afshari Bijarbaneh - Seyed Amirhossein Mousavi
Dynamic Connectivity Reveals Transformative Power of Neurofeedback in Brain Functional Networks
Kasra Momeni - Gholam- Ali Hossein-Zadeh
نقش هوش مصنوعی در تشخیص و پیشگیری از تقلب در خدمات مالی
مهدی محمدی امین - مهدی فرساد - هادی محمدی امین
more
Samin Hamayesh - Version 42.4.6