0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Fibroglandular Tissue Classification in Breast MRI: A Comparative Study of Automated Decision Strategies
Authors :
Meysam Khalaj
1
Arvin Arian
2
Ala Torabi
3
Nasrin Ahmadinejad
4
Masoumeh Gity
5
Seyedeh Nooshin Miratashi Yazdi
6
Mohammad Pooya Afshari
7
Melika Sadeghi Tabrizi
8
Hamid Soltanian-Zadeh
9
1- University of Tehran
2- Tehran University of Medical Sciences
3- Tehran University of Medical Sciences
4- Tehran University of Medical Sciences
5- Tehran University of Medical Sciences
6- Tehran University of Medical Sciences
7- University of Tehran
8- University of Tehran
9- University of Tehran
Keywords :
Fibroglandular Tissue Classification،Breast MRI،BI-RADS Assessment،Deep Learning،Shannon Entropy
Abstract :
Fibroglandular tissue (FGT) assessment in breast magnetic resonance imaging (MRI) is clinically important for breast cancer risk evaluation and is standardized in the Breast Imaging Reporting and Data System (BI-RADS) lexicon. While automated approaches have largely focused on segmentation, classification-based methods remain underexplored. Previous automated FGT classification studies have generally analyzed both breasts together, overlooking BI-RADS recommendations for side-specific evaluation and alternative strategies such as probability averaging or uncertainty-based rules. This study evaluates three assessment strategies: the conventional BI-RADS Maximum Rule, a novel Probability Averaging Rule to integrate bilateral information, and a novel Lower-Uncertainty Rule based on Shannon entropy to prioritize more confident predictions. These strategies were assessed using three diverse deep learning architectures, MobileNetV2, ResNeXt-26, and a hybrid ViT-ResNet, selected to analyze performance across models with different architectures and feature extraction mechanisms. The dataset comprised 654 pre-contrast 3D axial T1-weighted fat-saturated breast MRI scans, with each breast evaluated independently. Across ten independent runs, ViT-ResNet with Probability Averaging Rule achieved the highest test accuracy (0.85), F1 score (0.84), and Cohen’s kappa (0.78), while violin plot analysis showed that the Lower-Uncertainty Rule produced the lowest predictive entropy. Both proposed strategies consistently outperformed the conventional rule. The curated, expert-annotated dataset is publicly released to support reproducible research in this domain.
Papers List
List of archived papers
Engagement of shareholders in the company
Mahdi Rastkar Mirzaei - Ramin Saman Azari
سواد مالی و رونق گردشگریT مطالعه موردی گردشگران شهر یزد
محمدعلی فیض پور - مهدیه پیروی - ریحانه بابائی - جمال برزگری خانقاه
امنیت در سیستمهای توزیعشده: مقایسه رایانش ابری با فناوریهای سنتی و راهکارهای هوشمند مقابله با تهدیدات نوظهور
بهنام محمدلو - امین بابازاده سنگر
Optimization of the Mechanical Properties of PVA/Gelatin Hydrogel Reinforced with Polycaprolactone Nanofibers Using the Finite Element Method
Mohadeseh Nazouri - Iman Zoljanahi Oskui - Hadi Taghizadeh
تاثیر تمرین با تردمیل آبی بر کینماتیک پرش- فرود فوتسالیست های حرفه ای
صفورا قاسمی - مسعود گلپایگانی - امیرحسین نجیمی
A Combined Time-Frequency and Common Spatial-Spectral Pattern Approach for EEG-Based Motor Imagery Classification
Reza Nejati - Hamed Danandeh Hesar
Unsupervised Gait Anomaly Detection Using Generative Adversarial Networks: A Feasibility Study
Seyed Hooman Hosseini-Zahraei - Ali Chaibakhsh
نقش اینترنت اشیا و هوش مصنوعی در کاهش مصرف انرژی در شهرهای هوشمند
حسنا هاشم بیگی
بررسی میزان آشنایی با Chat GPT در میان دانشجویان دانشگاه تبریز
میثم معدنی پور - سید کمال الدین یکتا
Neural Correlates of Reward and Punishment Processing During Gambling-Based Decision-Making: A Simultaneous EEG-fMRI Study
Elias Ebrahimzadeh - Amin Mohammad Mohammadi - Ahmad Hammoud - Lila Rajabion - Hamid Soltanian-Zadeh
more
Samin Hamayesh - Version 42.5.2