0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
A Combined Time-Frequency and Common Spatial-Spectral Pattern Approach for EEG-Based Motor Imagery Classification
Authors :
Reza Nejati
1
Hamed Danandeh Hesar
2
1- Sahand University of Technology
2- Sahand University of Technology
Keywords :
Motor Imagery Tasks،Tunable-Q Wavelet Transform،Common Spatial-Spectral Patterns
Abstract :
Brain-Computer Interfaces (BCIs) are revolutionizing neurorehabilitation, providing crucial communication and control for individuals with severe motor impairments from conditions like ALS, spinal cord injuries, or stroke. By creating direct links between brain activity and external devices, BCIs bypass damaged neural pathways, thus restoring motor function and significantly enhancing quality of life. Electroencephalography (EEG) is a favored BCI modality due to its accessibility and cost-effectiveness. However, a major challenge lies in the substantial impact of cognitive and individual differences on motor imagery (MI) task performance and overall BCI accuracy. This research introduces a novel method to overcome these challenges, focusing on enhanced MI classification. Our approach synergistically integrates Common Spatial-Spectral Pattern (CSSP) filters with the Tunable-Q Wavelet Transform (TQWT). This powerful combination was applied to the extensive CHO-2017 database (52 participants), which uniquely captures significant inter-individual cognitive variations, specifically to distinguish between left and right-hand MI tasks. A critical aspect of our method is the utilization of only the top 10 most discriminative features extracted through this hybrid technique. This deliberate streamlining maximizes classification efficacy while maintaining computational efficiency. This tailored feature set demonstrated remarkable effectiveness, performing across 99% of participants. When integrated with a K-Nearest Neighbors (KNN) classifier, this approach achieved an outstanding accuracy of 98.84%, notably surpassing existing state-of-the-art methods in the field. These findings hold significant promise for developing more accurate and robust BCI systems capable of extracting optimal commands for diverse MI applications, ultimately advancing neurorehabilitation outcomes.
Papers List
List of archived papers
Silver Nanodisc Metasurface As Geometrical Tunable Absorber for Tailored Thermal Emission
Leila Ghasemzadeh - Sajjad Mortazavi - Karim Abbasian
بررسی رابطه بین کیفیت حسابرسی و ویژگی های کیفی سود و هزینه سرمایه در شرکت های پذیرفته شده در بورس اوراق بهادار تهران
مهدی شامی زاده - حیدر محمدزاده سالطه
حسابداری مصرف منابع
مهدی هاتفی - صبا نورالهی
Implementation of Anisotropic Hyperelastic Materials in NL-SBFEM Framework: The HGO Model
Seyed Sadjad Abedi-Shahri - Farzan Ghalichi - Iman Zoljanahi Oscui
Deep Learning Approaches for Alzheimer’s Disease Diagnosis: A Comprehensive Review
Mahdi Jafari Asl - Saba Haji Molla Rabie
تحلیل نقش هوش مصنوعی در تحول بازرگانی و مدیریت زنجیره تأمین: مطالعهی موردی گروه صنعتی مپنا
حسین بوذری
Engineering Injectable Gelatin-Tyramine/Alginate-Tyramine Hydrogels for Bone Tissue Engineering: A Ratio-Dependent Study of Structure, Mechanics, and Biocompatibility
Melika Mansouri Moghaddam - Soroush Ghofrani Beiragh - Elaheh Jooybar - Rana Imani
سواد مالی و رونق گردشگریT مطالعه موردی گردشگران شهر یزد
محمدعلی فیض پور - مهدیه پیروی - ریحانه بابائی - جمال برزگری خانقاه
بررسی کاربرد تکنیک های هوش مصنوعی در سیستم های توصیه گر
آسیه یاوری - علی اکبر نقابی
چالشها و فرصتهای هوش مصنوعی
بهزاد بالازاده - حسین بوداقی - مرتضی محمود زاده
more
Samin Hamayesh - Version 42.5.2