0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
A Combined Time-Frequency and Common Spatial-Spectral Pattern Approach for EEG-Based Motor Imagery Classification
Authors :
Reza Nejati
1
Hamed Danandeh Hesar
2
1- Sahand University of Technology
2- Sahand University of Technology
Keywords :
Motor Imagery Tasks،Tunable-Q Wavelet Transform،Common Spatial-Spectral Patterns
Abstract :
Brain-Computer Interfaces (BCIs) are revolutionizing neurorehabilitation, providing crucial communication and control for individuals with severe motor impairments from conditions like ALS, spinal cord injuries, or stroke. By creating direct links between brain activity and external devices, BCIs bypass damaged neural pathways, thus restoring motor function and significantly enhancing quality of life. Electroencephalography (EEG) is a favored BCI modality due to its accessibility and cost-effectiveness. However, a major challenge lies in the substantial impact of cognitive and individual differences on motor imagery (MI) task performance and overall BCI accuracy. This research introduces a novel method to overcome these challenges, focusing on enhanced MI classification. Our approach synergistically integrates Common Spatial-Spectral Pattern (CSSP) filters with the Tunable-Q Wavelet Transform (TQWT). This powerful combination was applied to the extensive CHO-2017 database (52 participants), which uniquely captures significant inter-individual cognitive variations, specifically to distinguish between left and right-hand MI tasks. A critical aspect of our method is the utilization of only the top 10 most discriminative features extracted through this hybrid technique. This deliberate streamlining maximizes classification efficacy while maintaining computational efficiency. This tailored feature set demonstrated remarkable effectiveness, performing across 99% of participants. When integrated with a K-Nearest Neighbors (KNN) classifier, this approach achieved an outstanding accuracy of 98.84%, notably surpassing existing state-of-the-art methods in the field. These findings hold significant promise for developing more accurate and robust BCI systems capable of extracting optimal commands for diverse MI applications, ultimately advancing neurorehabilitation outcomes.
Papers List
List of archived papers
Synthesis and Characterization of an Injectable Magnetic Scaffold Based on Alginate/Chitosan and Zero-Valent Iron for Hyperthermia
Mohammad Jafari Fashtami - Bahareh Khalilivavdareh - Delaram Dezfoulian - Maryam Tajabadi
ارائه مدل E-UNETR2D جهت قطعه بندی عروق کرونر از روی تصاویر سی تی آنژیوگرافی
مصطفی رجب زاده - فواد قادری - حمیدرضا پورعلی اکبر - نصرالله مقدم چرکری
پایداری، مسئولیت و اخلاق: مفاهیم مختلف برای یک مسیر واحد
رعنا شهدآور - ثمین مقیمی - فاطمه حسنی
توربین بادی محور عمودی بهینهشده برای محیطهای شهری
سید جواد روده چی تبریزی - ثمر گلدوز
Biomechanical Evaluation and Comparison of Spinal Fixators in the Lumbar (L3–L4) Region Using the Finite Element Method
Nima Moazed - Mohammad Haghpanahi
Dual-View Data Representation and Contrastive Learning for Robust EEG-Based Person Identification
Mahdi Tabatabaei - Mohammad Bagher Shamsollahi
کاهش توهم در مدلهای زبانی بزرگ جهت تولید اطلاعات درست
زهرا روزبهانی
بررسی تاثیر ارزش ویژه برند بر هوشمند سازی رفتار تبلیغاتی مصرکنندگان موبایل با میانجیگری عشق برند
زهرا علی میرزائی - حسین بوداقی
کاربرد رویکرد بازیابی اطلاعات در تحلیل داده های بیماران دیابتی
زهرا محمدی فرد چینی بلاغ
رابطه سیاست پولی و ورشکستگی شرکت با فرار مالیاتی
صفیه سلیمان نژاد - امید پایدار خیابانی - احمد شاهی - محمد هاشم نژاد سراجه لو
more
Samin Hamayesh - Version 42.4.6