0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Accurate Brain Vessel Segmentation in T1-Weighted MRI based on UNETR: Improving Neurosurgical Planning
Authors :
Fatemeh Gholizadeh
1
Mahdiyeh Rahmani
2
Ahmad Pour-Rashidi
3
Ebrahim Najafzadeh
4
Parastoo Farnia
5
Alireza Ahmadian
6
1- دانشگاه علوم پزشکی تهران
2- دانشگاه علوم پزشکی تهران
3- Northwestern University
4- دانشگاه علوم پزشکی ایران
5- دانشگاه علوم پزشکی تهران
6- دانشگاه علوم پزشکی تهران
Keywords :
Brain Vessels Segmentation،T1CE MRI images،Deep Learning،Neurosurgical Pre-Planning
Abstract :
Preoperative planning for brain tumor surgeries is highly challenging and requires precise identification of vascular anatomy to minimize the risk of complications. While T1-weighted contrast-enhanced (T1CE) MRI is routinely used for preoperative assessment, automated vessel segmentation from these scans remains a significant challenge. The absence of reliable vessel maps can disrupt surgical workflows and may compromise patient safety, especially in settings where specialized angiographic imaging is not available. In this study, we propose a transformer-based UNETR model that leverages global contextual information to address the complexity of brain vessel segmentation. After standardized preprocessing, the model was trained and validated on 30 expert-annotated T1CE MRI scans. The approach achieved high performance, with a Dice score of 87%, IoU of 0.98, sensitivity of 0.99, and specificity of 0.99, showing strong capability in detecting both major vessels and smaller vascular branches. These findings highlight the potential of attention-based architectures to enhance routine clinical imaging by providing accurate vessel maps directly from standard MRI sequences already acquired for tumor evaluation. Such a framework could support safer and more efficient preoperative planning without requiring additional imaging resources.
Papers List
List of archived papers
پیشبینی وضعیت ترافیک با استفاده از الگوریتم KNN یک مطالعه موردیبر اساس دادههای دوماهه ترافیک
متین نهاوندی
2D Residual U-Net for Accurate Lumbar Vertebrae Segmentation in MRI-Based Low Back Pain Diagnosis using the SPIDER Dataset
Armita Rahimi Borgi - Abdollah Zohrabi - Ali Kazemi - Mostafa Abdolghaffar - Ramin Kordi - Parastoo Farnia - Alireza Ahmadian
کاربرد هوش مصنوعی در حقوق تجارت
دانیال دولت شا - لیلا جوانمرد
افزایش تاب آوری سایبری با تلفیق بلاکچین و هوش مصنوعی: به کارگیری قراردادهای هوشمند جهت جلوگیری از تغییر سطح دسترسی مهاجم در حملات APT
شهرام حاج غنی - فرزانه عبدالرحیمی - زهره ابوالهادی
Biomechanical Contrast Between Native and Decellularized Triple-Negative Breast Tumors in Mice
Mohammad Javad Farjam - Saman Asadi - Ashkan Azimzadeh - Saeid Amanpour - AbdolMohammad Kajbafzadeh - Mohammad Ali Nazari
بررسی رابطه عملکرد اجتماعی، زیست محیطی با عملکرد مالی شرکت های بورس اوراق بهادار تهران
بنفشه فهیمی نیری - حسین بوداقی خواجه نوبر
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
Mahdiyeh Tofighi Milani - Sina Shamekhi - Asghar Zarei
Examination and Analysis of the Influence of Near-Infrared Light Absorption by Hair Melanin on fNIRS Signal
Elmira Baghaeifar - Sina Shamekhi
بررسی رابطه بین کیفیت حسابرسی، تأمین مالی بدهی و مدیریت سود در مراحل مختلف چرخه عمر شرکتها
محدرضا پژوهی
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Ehsan Karami - Hamid Soltanian-Zadeh
more
Samin Hamayesh - Version 42.4.6