0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Accurate Brain Vessel Segmentation in T1-Weighted MRI based on UNETR: Improving Neurosurgical Planning
Authors :
Fatemeh Gholizadeh
1
Mahdiyeh Rahmani
2
Ahmad Pour-Rashidi
3
Ebrahim Najafzadeh
4
Parastoo Farnia
5
Alireza Ahmadian
6
1- دانشگاه علوم پزشکی تهران
2- دانشگاه علوم پزشکی تهران
3- Northwestern University
4- دانشگاه علوم پزشکی ایران
5- دانشگاه علوم پزشکی تهران
6- دانشگاه علوم پزشکی تهران
Keywords :
Brain Vessels Segmentation،T1CE MRI images،Deep Learning،Neurosurgical Pre-Planning
Abstract :
Preoperative planning for brain tumor surgeries is highly challenging and requires precise identification of vascular anatomy to minimize the risk of complications. While T1-weighted contrast-enhanced (T1CE) MRI is routinely used for preoperative assessment, automated vessel segmentation from these scans remains a significant challenge. The absence of reliable vessel maps can disrupt surgical workflows and may compromise patient safety, especially in settings where specialized angiographic imaging is not available. In this study, we propose a transformer-based UNETR model that leverages global contextual information to address the complexity of brain vessel segmentation. After standardized preprocessing, the model was trained and validated on 30 expert-annotated T1CE MRI scans. The approach achieved high performance, with a Dice score of 87%, IoU of 0.98, sensitivity of 0.99, and specificity of 0.99, showing strong capability in detecting both major vessels and smaller vascular branches. These findings highlight the potential of attention-based architectures to enhance routine clinical imaging by providing accurate vessel maps directly from standard MRI sequences already acquired for tumor evaluation. Such a framework could support safer and more efficient preoperative planning without requiring additional imaging resources.
Papers List
List of archived papers
کاربرد هوش مصنوعی در مدیریت ارتباط با مشتری
سعیده شریفی علون آبادی - ناصر خانی
A Survey on Cardiac MRI Segmentation: From Classical Methods to State-of-the-art Deep Learning
Hamed Aghapanah Roudsari - Reza Saboori Amleshi - Ali Saeeidi Rad - Masoud Noroozi
Alterations of Brain Activation Maps in Adults with ADHD During Risk-Related Decision-Making Evidence from the Balloon Analogue Risk Task
Bahar Kermani - Mahdi Mirzaee Barzegar - Alireza Shirazinodeh
تأثیر هوش مصنوعی بر طراحی ارگونومیک محیط کار: بررسی الگوریتمهای یادگیری ماشین و ایمنی تولید فولاد
معراج جلیلی - پوریا علیمرادی - فرید نصیریان
ساخت و مشخصه یابی چسب زیستالهام برپایه ژلاتین با اتصالات دوگانه آرژنین و اسید کافئیک برای هموستاز سریع
غزل یعقوبی - مهشید خرازیها
تاثیر هوش مصنوعی بر مدیریت زنجیره تامین در صنایع
افشین محمدی - پریا بخشیان
تحلیل نقش رایانش ابری در چابکی زنجیره تأمین
دکتر غلامرضا جمالی - توحید بهزادی فرد - حسن ایزدی فر
Goniometry and Electromyography Data Analysis for Knee Health Diagnosis using Machine Learning
Mohammad-Reza Sayyed Noorani - Zahra Mahmoudi Anzabi - Sara Sharifi
حفظ حریم خصوصی دادهها در اینترنت اشیای پزشکی (IoMT) با استفاده از یادگیری فدرال (Federated Learning) در معماری مه
سالار لطفی آقجه - نازنین خاکسبز - نیلوفر رنجبر
استقرار حاکمیت شرکتی در هوش مصنوعی در جهت منافع عمومی
رعنا شهدآور - الهام رضا پور - وحید حسین زاده قویدل - آیسان صدقی
more
Samin Hamayesh - Version 42.5.2