0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Finite Element Analysis of Lumbar Spine Biomechanics Following Cement Augmentation with Different PMMA Volumes: A Comparison with Intact Spine
Authors :
Reihane Yazdani
1
Mohammdjavad (Matin) EinaAfshar
2
Azadeh Ghoochani
3
Nima Jamshidi
4
1- University of Isfahan
2- Aalborg University, Denmark
3- University of Isfahan
4- University of Isfahan
Keywords :
Bone cement augmentation،Vertebral compression fracture
Abstract :
This study presents a finite element analysis (FEA) of lumbar spine biomechanics following cement augmentation with varying volumes of polymethylmethacrylate (PMMA), aiming to identify the optimal volume for vertebral stability while minimizing stress on adjacent segments. A three-dimensional model of the L2–L3 motion segment was constructed from CT scans of a 50-year-old female patient using MIMICS and 3-Matic software. The cortical shell thickness was set to 1 mm, endplates to 0.8 mm, and the intervertebral disc was modeled based on patient anatomy and literature. Cement was idealized as a cylinder coaxial with a pedicle screw and embedded within the trabecular bone. Three cement volumes—1.0 mL, 1.5 mL, and 2.5 mL—were analyzed alongside an intact control model. Boundary conditions included full constraint of L3 and application of compressive and bending loads to L2. Simulations were performed using Abaqus CAE 2022 under dynamic explicit conditions. Results showed that 1.5 mL cement reduced compressive stress by 29.9%, while 2.5 mL yielded the greatest reductions in flexion (56.2%), lateral bending (2.5%), and axial rotation (3.3%). The intact vertebra exhibited maximum von Mises stress of 86.35 MPa under compression, compared to 60.5 MPa and 70.54 MPa for 1.5 mL and 2.5 mL cement, respectively. These findings suggest that moderate cement volumes offer superior biomechanical performance across multiple loading scenarios. Despite modeling simplifications, the study supports the use of simulation-based planning to optimize cement volume and enhance procedural safety in vertebral augmentation.
Papers List
List of archived papers
Graph Attention Networks for EEG-Based Emotion Recognition: Focus on Channel‑Level Attention
Akbar Asgharzadeh-Bonab - Hamid Bigdeli - Mohammad Javad Heidari
Predicting employee loyalty based on machine learning algorithms,Case study: Pars Online Company Call Center
Mohammad Reza Haji-Ahmadi - Mohammad-Ali Eghbali - Hossein Eghbali
بررسی تاثیر اجتناب مالیاتی بر اهرم مالی و جریان نقدی
صفیه سلیمان نژاد - امید پایدار خیابانی - احمد شاهی - محمد هاشم نژاد سراجه لو
Multiclass ICU Length-of-Stay Prediction Using Tree-Based Machine Learning Techniques
Mahyar Mohammadian - Somayeh Afrasiabi
هوش مصنوعی در توسعه علوم پایه: راهکارهای عملی برای تحقق تحول علمی و صنعتی
سارا سهیلی
مبانی فلسفی خداشناسی و چالش های مدیریت اسلامی در عصرتکنولوژی
نبی الله جیحون - حسین متفکر - حسن الوداری
شناسایی عوامل موثر بر تمایل به فرار مالیاتی با در نظر گرفتن عوامل فرهنگی با رویکرد تحلیل مضمون
نیما صدری نوبر زاد - پریسا صدری نوبر زاد
تاثیر کیفیت گزارشگری مالی بر مالی سازی شرکت با تاکید بر هزینه های نمایندگی
حیدر محمدزاده سالطه - محمد احسانی - سید علی موسوی
A survey over deep learning methods for early detection in mammogram images
Zeinab Shirkool - Mohammad Ali Tabarzad - Reza Boostani
شبیهسازی المان محدود رفتار ناهمسانگرد لیگامان پریودنتال بر اساس توزیع سهبعدی فیبرهای کلاژن
محیا بناپور نجاری - علی ولایی - هادی تقیزاده
more
Samin Hamayesh - Version 42.4.6