0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Multi-Level Driver Fatigue Detection Using EEG Signals with CNN–LSTM Models in a Compressed Sensing Framework
Authors :
Sobhan Sheykhivand
1
Nastaran Khaleghi
2
1- Department of Biomedical Engineering Faculty of Interdisciplinary sciences and technologies Bonab, Iran
2- Department of Biomedical Engineering Faculty of Electrical and Computer Tabriz, Iran khaleghi@gmail.com
Keywords :
driver fatigue،multi-level classification،CNN،LSTM،compressed sensing,،EEG
Abstract :
Driver fatigue is a major contributor to road accidents, leading to reduced attention, slower reaction times, and impaired decision-making. This study presents a multi-level fatigue detection framework based on electroencephalography (EEG) signals, in which a Convolutional Neural Network (CNN) is employed to extract spatial patterns, and a Long Short-Term Memory (LSTM) network is used to model temporal dynamics in a cascaded architecture. To handle the high dimensionality and redundancy of EEG data, Compressed Sensing (CS) is applied with various compression ratios. Experimental results demonstrate that the proposed system achieves over 90% accuracy and an F1-score above 90% in multi-level fatigue classification. Even at a compression ratio of CR = 40%, the accuracy remains above 90%, while reducing the data volume by approximately 40%. Additional analyses using sensitivity, specificity, Cohen’s kappa, and ROC curves confirm the superiority of the proposed approach compared to baseline models (without CS or with simpler architectures). These findings indicate that the proposed framework is well-suited for real-time, portable driver monitoring systems.
Papers List
List of archived papers
High-throughput microfluidic electroporation system using 3D-hydrodynamic focusing
Zohre Nazemi Dehkordi - Ali Abouei Mehrizi
Electrochemical Biosensors Based on Polyaniline Nanostructures: An Analysis of Advances, Performance Challenges, and the Outlook for Smart Systems
Nasim Kharazminezhad - Ramez Pourahmad
Benchmarking nnU-Net vs. Custom 3D U-Net for Kidney Tumor Segmentation: A Controlled Study on KiTS19 Dataset
Ariya Soleimany - Masoud Noroozi - Mohammad Saber Azimi - Alireza Karimian - Jafar Majidpour - Hossein Arabi
نوآوری در امنیت هوشمند: طراحی سیستمهای AI با مقاومت ذاتی در برابر تهدیدات سایبری
علی غلام نتاج - محمد عرفان رحمانیان کوشککی - امیدرضا حمیدی نیا - محمد مهدی افتخاری
Transforming Sentiment Analysis with a New LLM Architecture
Hossein Gholamalinejad - Tahoora Ramezanimoghaddam
A Review of the Impact of Visible Spectrum Electromagnetic Wavelengths on Cellular Behaviors
Arsalan Heidarpanah - Hamid Keshvari - Mehrdad Saviz
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
Mahdiyeh Tofighi Milani - Sina Shamekhi - Asghar Zarei
مقابله با عوامل ایجادکننده تقلب در صورتهای مالی (مرور سیستماتیک از ادبیات و تحلیل بیبلیومتریک)
شبنم بالازاده قره باغی - یونس حیدری - مریم یادگاری دیزناب - پرهام شاکری بهادر
بررسی توسعه هوش مصنوعی و بازارهای مالی و اقتصادی ایران در مقایسه با کشوهای غرب آسیا
تارا اصغرخانی
بررسی تاثیر برند سازی شخصی و سرمایه انسانی استراتژیک بر عملکرد شرکتهای تولید فراورده های گوشتی استان اصفهان
علی فردوس مکان
more
Samin Hamayesh - Version 42.5.2