0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
Authors :
Mahdiyeh Tofighi Milani
1
Sina Shamekhi
2
Asghar Zarei
3
1- دانشگاه صنعتی تبریز(سهند)
2- دانشگاه صنعتی تبریز(سهند)
3- دانشگاه صنعتی تبریز(سهند)
Keywords :
Schizophrenia،Electroencephalogram،Machine Learning،Fuzzy Entropy
Abstract :
Schizophrenia is a severe mental disorder that frequently causes the patient to have numerous problems with normal daily activities, and still, doctors struggle to accurately diagnose it in the early stages. Brain imaging and clinical tests, even if they are sometimes capable of achieving the goal, are often a lengthy procedure, expensive, and can also be somewhat uncomfortable for patients. New scientific work seeks to come up with a less intrusive and cheaper method, which will include the use of the EEG signal and the ML algorithm in identifying abnormalities of the schizophrenic patients as compared with the healthy ones. At first, the Fast Fourier Transform (FFT) was used to decompose the EEG signal into multiple sub-bands of frequency, and it was decided to extract a set of features from each sub-band, where the features included the statistical and nonlinear features - kurtosis, skewness, Shannon entropy, fuzzy entropy, mobility, and complexity. Subsequently, the ReliefF algorithm was utilized for the selection of features, and the significant features thus extracted were used as input for a number of classifiers, including the k-nearest neighbors (KNN), linear support vector machine (SVM), and the random forest (RF), to name but a few. The functional capabilities of the designed system were verified on a genuine EEG dataset that contains recorded signals from teenage schizophrenia patients as well as from healthy subjects. Random forest was identified as the most effective one among the various implemented classifiers, as it achieved the highest performance with an average accuracy of 97.69%. Also, fuzzy entropy was identified to be a constantly discriminative feature, implying it could serve as a sound biomarker for the differentiation of schizophrenia from healthy subjects by utilizing EEG signals.
Papers List
List of archived papers
ترکیب سیگنالهای EEG و ردیابی چشم برای توانبخشی به بیماران ضایعه نخاعی
امیررضا احمدی
Natural Language Processing and Speech Processing Integration: Toward A Point-of-Care Framework for Early Detection of Alzheimer’s Disease
Aslan Modir - Fatemeh Shalchizadeh - Armin Ghasimi - Sina Shamekhi
مرور نظاممند ادبیات: نوآوریها و چالشهای مدیریت زنجیره تأمین جهانی در عصر دیجیتال:نقش فناوریهای پیشرفته و استراتژیهای تابآور
ساجده غلامی چهارطاق - نازنین عصمتی
Dynamic Cross-Frequency Coupling Reveals Task Dependent Neural Engagement During Varying Cognitive Demands
Seyed Saman Sajadi - Babak Fazli - Fateme Karbasi - Ehsan Garosi - Milad Jalilian - Soheila Hosseinzadeh - Amir Homayoun Jafari - Seyed Abolfazl Zakerian
تشخیص سرطان پستان از طریق طبقهبندی تصاویر: مروری بر روشها و روندهای فعلی
ریحانه ابراهیمی نسب - آزیتا شیرازی پور - سید جواد میرعابدینی
بهبود تخمین ضربان قلب در دستگاههای پوشیدنی تجاری با استفاده از فیلتر کالمن و مدلهای رگرسیون
میلاد رضایی ارجمند - تانیا حسین خانی - امیرحسین تجرد - علیرضا طالش جفادیده - اصغر زارعی
Multifunctional Coatings for Biomedical Alloys: Biocompatibility and Antibacterial Activity of Hydroxyapatite with YSZ and Silver on Nitinol
Mehdi HOSSEINI - Mehdi MOZAMMEL - Milad HOSSEINI - Jafar HKALIL-ALLAFI
طراحی چارچوب شخصیسازیشده درمان بیماری MS مبتنی بر یادگیری تقویتی عمیق SAC
مریم سبزه یان - محبوبه سبزه یان - امین نوری - ماندانا سادات غفوریان
استراتژی رفتارگرایانه مدیریتی: چگونگی کنار آمدن با زمینه های آشفته و نامطمئن
رعنا شهدآور - صبا کبیرخو - سیما غفاری
Region-Specific EEG Channel-Based Emotion Detection using Bi-directional Deep Neural Networks
Mahdi Jafari Asl - Sina Shamekhi - Fatemeh Shalchizadeh
more
Samin Hamayesh - Version 42.5.2