0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
Authors :
Mahdiyeh Tofighi Milani
1
Sina Shamekhi
2
Asghar Zarei
3
1- دانشگاه صنعتی تبریز(سهند)
2- دانشگاه صنعتی تبریز(سهند)
3- دانشگاه صنعتی تبریز(سهند)
Keywords :
Schizophrenia،Electroencephalogram،Machine Learning،Fuzzy Entropy
Abstract :
Schizophrenia is a severe mental disorder that frequently causes the patient to have numerous problems with normal daily activities, and still, doctors struggle to accurately diagnose it in the early stages. Brain imaging and clinical tests, even if they are sometimes capable of achieving the goal, are often a lengthy procedure, expensive, and can also be somewhat uncomfortable for patients. New scientific work seeks to come up with a less intrusive and cheaper method, which will include the use of the EEG signal and the ML algorithm in identifying abnormalities of the schizophrenic patients as compared with the healthy ones. At first, the Fast Fourier Transform (FFT) was used to decompose the EEG signal into multiple sub-bands of frequency, and it was decided to extract a set of features from each sub-band, where the features included the statistical and nonlinear features - kurtosis, skewness, Shannon entropy, fuzzy entropy, mobility, and complexity. Subsequently, the ReliefF algorithm was utilized for the selection of features, and the significant features thus extracted were used as input for a number of classifiers, including the k-nearest neighbors (KNN), linear support vector machine (SVM), and the random forest (RF), to name but a few. The functional capabilities of the designed system were verified on a genuine EEG dataset that contains recorded signals from teenage schizophrenia patients as well as from healthy subjects. Random forest was identified as the most effective one among the various implemented classifiers, as it achieved the highest performance with an average accuracy of 97.69%. Also, fuzzy entropy was identified to be a constantly discriminative feature, implying it could serve as a sound biomarker for the differentiation of schizophrenia from healthy subjects by utilizing EEG signals.
Papers List
List of archived papers
Investigating the impact of arm swing on lower limb forces using machine learning techniques
Mohammad Reza Seidgar - Hadi Farahani - Mostafa Rostami - Elham Naziri - Sadegh Madadi
Robust Glucose Level Classification from NIR-Based PPG Using Morphological Features
Arian Mesforoosh Mashhad - Yeganeh Binafar - Mohammad Reza Akbarzadeh Totonchi
بررسی نقش فناوری هوش مصنوعی در فرآیند ایجاد مدل خدمات دستگاه خودپرداز
سجاد یوسفی - مریم پورنجف - آیدا محمدی - ساحل پرسته
نقش پیاده سازی هوش مصنوعی در تحول ارتباطات بازاریابی وتوسعه ی شایستگی اخلاقی برندهای فعال
شبنم سخی نیا
تهدیدهای حریم خصوصی در شهرهای هوشمند
محمد امیری نسب - محمد عادلی نیا
هوش مصنوعی و حاکمیت شرکتی
محمد ملکی
Emotion Recognition from EEG signal using GA-FLANN with Whale Optimization Algorithm
Mohammadamir Razmi - Pouya Faridfar - Seyed Amirreza Navali Hosseini alavi
کاربرد هوش مصنوعی در مدیریت ارتباط با مشتری
سعیده شریفی علون آبادی - ناصر خانی
بررسی آمارههای توصیفی فواصل بین ژنی ژنوم و پاتوژنی در دو سویه K12 و O157:H7 باکتری E. Coli با رویکرد بیوانفورماتیکی
علی دژبرد - مرتضی علیزاده - محمد حاجی تبار - رحمان خدادادی گله
مقایسه روشهای مختلف دوخت تاندون فلکسور دست با استفاده از آنالیز اجزای محدود
امیررضا کاظمی - محمد جعفری - محمد مهدی جلیلی - سید حسین سعید بنادکی
more
Samin Hamayesh - Version 42.5.2