0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Accurate Brain Vessel Segmentation in T1-Weighted MRI based on UNETR: Improving Neurosurgical Planning
نویسندگان :
Fatemeh Gholizadeh
1
Mahdiyeh Rahmani
2
Ahmad Pour-Rashidi
3
Ebrahim Najafzadeh
4
Parastoo Farnia
5
Alireza Ahmadian
6
1- دانشگاه علوم پزشکی تهران
2- دانشگاه علوم پزشکی تهران
3- Northwestern University
4- دانشگاه علوم پزشکی ایران
5- دانشگاه علوم پزشکی تهران
6- دانشگاه علوم پزشکی تهران
کلمات کلیدی :
Brain Vessels Segmentation،T1CE MRI images،Deep Learning،Neurosurgical Pre-Planning
چکیده :
Preoperative planning for brain tumor surgeries is highly challenging and requires precise identification of vascular anatomy to minimize the risk of complications. While T1-weighted contrast-enhanced (T1CE) MRI is routinely used for preoperative assessment, automated vessel segmentation from these scans remains a significant challenge. The absence of reliable vessel maps can disrupt surgical workflows and may compromise patient safety, especially in settings where specialized angiographic imaging is not available. In this study, we propose a transformer-based UNETR model that leverages global contextual information to address the complexity of brain vessel segmentation. After standardized preprocessing, the model was trained and validated on 30 expert-annotated T1CE MRI scans. The approach achieved high performance, with a Dice score of 87%, IoU of 0.98, sensitivity of 0.99, and specificity of 0.99, showing strong capability in detecting both major vessels and smaller vascular branches. These findings highlight the potential of attention-based architectures to enhance routine clinical imaging by providing accurate vessel maps directly from standard MRI sequences already acquired for tumor evaluation. Such a framework could support safer and more efficient preoperative planning without requiring additional imaging resources.
لیست مقالات
لیست مقالات بایگانی شده
A Telemedicine Approach to Therapist-Free VR Exposure Therapy for Acrophobia: A pilot study
Arya Gholipoor Hanizi - Samaneh Minakhani - Poorya Gholipoor
تاثیر عدم تقارن اطلاعاتی بر ارتباط بین عدم اطمینان اقتصادی و متنوعسازی شرکتی
ناهیده شاهنده ننه کران - امین آرام گر - مهدی عبدالهی شتربانی
Improved Metric for Classification of Nearby Reaching Targets: A Distance-Weighted Accuracy Approach
Zahra Dayani - Ali Maleki - Ali Fallah
Enhancing Drug–Target Affinity Prediction with Non-Local Block Graph Neural Networks
Reza Tahmasebi - Eghbal Mansoori - Armin Piashehvar - Abbas Mehrbaniyan
Accelerated Diffusion-Weighted Imaging via Diffusion Gradient Alternation in Radial k-Space Sampling
Fateme Hoseini Rashkani - Abbas Nasiraei Moghaddam
کشف قوانین انجمنی با استفاده از الگوریتم ژنتیک در جهت افزایش دقت تشخیص بیماری تیروئید
نرمین قادر - فرهاد سلیمانیان قره چپق
Predicting Sleep Efficiency and Apnea Index Using ECG-Derived and Sleep Quality Features: A Machine Learning Approach
Mahla Khodaverdi - Raheleh Davoodi
OpenSim Musculoskeletal Modeling Framework for sEMG-Based Knee Torque Estimation
Mohammad-Reza Sayyed Noorani - Mariya A. Vaziry - Seyed Alireza MirTajeddini
تاثیر قابلیت مقایسه صورتهای مالی بر مربوط بودن اطلاعات حسابداری
محمد فرجی بنائی - نیما تمجیدی فر - امیرحسین قوچی
بررسی تاثیر حسابداری منابع انسانی بر عملکرد رقابتی استراتژیک شرکتهای کوچک و متوسط استان گیلان
ائلناز سیادتی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2