0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EEG-based Schizophrenia Detection Using Spectral, Entropy, and Graph Connectivity Features with Machine Learning
Authors :
Nazila Ahmadi Daryakenari
1
Seyed Kamaledin Setarehdan
2
1- دانشکده برقوکامپیوتر، دانشگاه تهران
2- دانشکده برقوکامپیوتر، دانشگاه تهران
Keywords :
Artificial Intelligence،Bandpower،EEG،Functional Connectivity،Graph Features،Machine Learning،Multiscale Permutation Entropy،Schizophrenia Detection
Abstract :
Schizophrenia is a serious mental disorder that changes the way people think, perceive, and manage daily life. Getting the diagnosis right is critical for proper treatment, but in practice it is often difficult. Current evaluations depend mostly on a clinician’s judgment, and the overlap of symptoms with bipolar disorder or major depression makes the task even harder. EEG offers a safe and noninvasive way to study brain activity, yet no single EEG feature has been reliable enough to stand on its own. This makes it important to look at integrative approaches that bring together different aspects of brain dynamics. In this study, we analyzed EEG features to distinguish patients with schizophrenia from healthy controls. Spectral power was measured across δ, θ, α, β, and γ bands. Temporal irregularity was measured with Multiscale Permutation Entropy (MPE), its first application to EEG in schizophrenia. Functional connectivity was estimated with the weighted Phase Lag Index in θ, α, and β bands, followed by the extraction of graph measures including global efficiency, clustering coefficient, characteristic path length, and mean strength. These features were used to train Random Forest, Multi-Layer Perceptron, and Support Vector Machine classifiers. Among the models, Random Forest achieved the most reliable performance, reaching 99.7% accuracy under stratified 5-fold validation and 99.6% under leave-one-subject-out validation. Feature analysis showed that connectivity in θ and α bands contributed most strongly to classification. Topographic maps of θ, α, and β activity also revealed regional group differences. Overall, the results suggest that combining spectral, entropy, and connectivity measures provides a robust framework for EEG-based detection of schizophrenia. Such integrative approaches may support the development of reliable biomarkers and bring EEG closer to practical use in psychiatric care.
Papers List
List of archived papers
A Model for Predicting Customer Purchase Intentions in Digital Marketplace
Salman Nazari-Shirkouhi - Reihane Zarei Babaarabi - Mohammad Abdollahi
DMAEMA-based photocrosslinkable hydrogels with injectable capabilities for smart drug delivery systems in implant infections
Fatemeh Haj Sadeghi - Vahid Haddadi Asl - Hanie Ahmadi
Data Mining in the Age of Information Explosion: An Intelligent Analysis Tool for Social Media
Hossein Bodaghi Khajeh Noubar - Seyed Meead Hosseini - Shiva Mohammadi
OpenSim Musculoskeletal Modeling Framework for sEMG-Based Knee Torque Estimation
Mohammad-Reza Sayyed Noorani - Mariya A. Vaziry - Seyed Alireza MirTajeddini
بررسی تأثیر اطلاعات محیطی شرکت و ریسک عدم بازپرداخت بدهیها بر ریسک سقوط قیمت سهام با توجه به نقش تعدیلگر بحران کمآبی
زهره حاجیها - شهرام کامکار
مروری جامع بر اجتماعی شدن مالی
علیرضا هوشمندی - امید پورحیدری - امیرحسین تائبی نقندری
آمایش گردشگری مناطق ایران و هوش مصنوعی
محمدعلی فیض پور - مهدیه پیروی
طراحی ربات نرم پوشیدنی مچ پا با کنترل پیشبین مدل برای توانبخشی پس از سکته
امیرحسین اختراعی طوسی - یگانه خراشادی زاده
مدل یادگیری ماشین برای امنیت سایبری شهر هوشمند
علیرضا فولاد - محمد امین مقدادی - علی عبدلی - شایان مسگر
نقش هوش مصنوعی در مزیت رقابتی با نقش میانجی استراتژی های بازاریابی
امین سلطانی
more
Samin Hamayesh - Version 42.5.2