0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EJES: A Diverse Estimator Bank Framework for High-Resolution EEG/MEG Source Localization
Authors :
Reza Khajehsarvi
1
Sayed Mahmoud Sakhaei
2
Sadegh Jamshidpour
3
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
3- دانشگاه صنعتی نوشیروانی بابل
Keywords :
Brain Source Reconstruction،Inverse Problem،Localization،Estimator Bank،MUSIC،LCMV
Abstract :
Brain source reconstruction from electroencephalography (EEG) and magnetoencephalography (MEG) signals is a central inverse problem in neuroscience. Classical localization algorithms, however, are highly sensitive to realistic conditions such as limited data length, low signal-to-noise ratios, and structured interference, which greatly restricts their reliability in clinical and research applications. To address this limitation, we introduce the Ensemble of Joint Estimation Strategy (EJES), a novel framework for robust source localization. EJES leverages algorithmic diversity by constructing a heterogeneous bank of estimators drawn from two distinct families: subspace-based approaches, implemented as weighted Multiple Signal Classification (MUSIC) estimators, and spatial filtering approaches, implemented as beamformers operating on different powers of the data covariance matrix. A final, stable source estimate is obtained by selectively integrating the outputs of these estimators through a robust consensus mechanism. The performance of the EJES framework was quantitatively evaluated against standard, single-algorithm approaches through extensive Monte Carlo simulations. Results consistently demonstrate that EJES provides significantly more accurate and stable localization than conventional single-algorithm methods, particularly under challenging scenarios combining short data segments, low signal quality, and high interference. These findings underscore the potential of ensemble strategies to improve the robustness of neuroelectromagnetic source reconstruction, providing a more reliable tool for noninvasive brain imaging.
Papers List
List of archived papers
Semi-Automatic Multi-Stage Artifact Removal in EEG During Subthreshold GVS: A Machine Learning Approach for Neuromodulation Studies
Mahdi Babaei - Sepideh Hajipour Sardouie - Martin Keung - Varsha Sreenivasan - Hanaa Diab - Maryam S. Mirian - Martin J. McKeown
پیشنهاد درمان شخصیسازیشده برای بیماران OCD با یادگیری تقویتی
سمیه حسینی زنوزی
Improved Metric for Classification of Nearby Reaching Targets: A Distance-Weighted Accuracy Approach
Zahra Dayani - Ali Maleki - Ali Fallah
هیدروژل ژل شونده آنزیمی بر پایه ژلاتین برای استفاده در کاربردهای مهندسی بافت
وحیده ابراهیمی بختور - علی برادر خوش فطرت - الهام دهقانی
Early Alzheimer’s Detection with MRI-Based Deep Convolutional Neural Networks and Transfer Learning
Tabasom Musavi - M. J. Tarokh
نرم افزار استعدادیابی ورزشی مبتنی بر هوش مصنوعی و ترانسفر ورزش ایران (ترابال)
محمدرضا عبدی جله کران
Static and Dynamic WPLI on Stressful Scenarios: an EEG Study
Nasrin Dehghani - Negin Joghataei - Zahra Ghanbari - Mohammad Hassan Moradi
بررسی ابزارهای حسابداری در بازار ارزهای دیجیتال و شبکه بلاکچین
میلاد هاشم زاده
Toward Precision Psychiatry: Differentiating Depression and Psychosis Using EEG-Based Machine Learning Models
Vahid Asayesh - Mehdi Dehghani - Majid Torabi - Sepideh Akhtari-Khosroshahi - Maedeh Akhtari-Khosroshahi - Sebelan Daneshvar
بررسی رابطه بین توانایی مدیران و تاخیر قیمت سهام شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران
حمیدرضا عزیزی
more
Samin Hamayesh - Version 42.4.6