0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
ECG-Based Detection of Acute Myocardial Infarction Using a Wrist-Worn Device: a Machine Learning Approach
Authors :
Tania Hossein Khani
1
Amir hossein Tajarrod
2
Asghar Zarei
3
Mousa Shamsi
4
1- دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران
2- دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران
3- دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران
4- دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران
Keywords :
Machine learning،Acute myocardial infarction،ECG،Wrist-worn wearable ECG،Hjorth parameters
Abstract :
Identifying acute myocardial infarction (AMI) at an early stage, particularly outside the hospital, remains one of the most pressing challenges in modern healthcare. While many wearable devices can record electrocardiogram (ECG) signals, most lack the essential precordial leads that are critical for accurate AMI detection. In this study, we evaluate the diagnostic capability of a wrist-worn, two-lead wearable ECG (wECG) device and compare its performance with the clinical standard, the conventional 12-lead ECG. Our analysis is based on a dataset where wECG and standard 12-lead ECG signals were recorded simultaneously from three participant groups: healthy individuals (CTRL), patients diagnosed with AMI, and patients with other cardiovascular diseases (CVD). This paper proposes a framework for diagnosing AMI patients as distinct from healthy individuals. Within this framework, we extracted both statistical features and Hjorth parameters. Then employed four different machine learning classifiers to assess classification performance across various scenarios. Using mutual information and f-test scores, we selected the best lead based on inter-class separation. The standard 12-lead ECG models achieved nearly flawless results, reaching 100% average accuracy. The wECG device also demonstrated impressive capabilities, accurately distinguishing between healthy participants and AMI patients with more than 98% average accuracy. Notably, the V5-LA configuration, when processed with the KNN classifier, achieved perfect average accuracy, highlighting the strong diagnostic power of this single lead. Overall, our results indicate that with careful design, a compact wECG device has the potential to serve as a reliable and highly effective tool for AMI detection in pre-hospital environments.
Papers List
List of archived papers
بررسی حسابرسی تقلب در شرکتها و گزارش اخلاقی تقلب
محمدحسین مظلومان - محمدامین زکی زاده
Benchmarking nnU-Net vs. Custom 3D U-Net for Kidney Tumor Segmentation: A Controlled Study on KiTS19 Dataset
Ariya Soleimany - Masoud Noroozi - Mohammad Saber Azimi - Alireza Karimian - Jafar Majidpour - Hossein Arabi
بررسی اثر ضد سرطانی لیپوزوم پگیله حاوی ترکیب جنسینوساید Rh2 بر سرطان روده بزرگ در مدل آزمایشگاهی و حیوانی
محسن زارع - ناهید حسن زاده نعمتی - هادی زارع زردینی
تاثیر پیچیدگی وظیفه بر عملکرد حسابرسان با تأکید بر جنبه های فردی و معنوی
حیدر محمدزاده سالطه - هانیه کریم زاده
Leveraging Normal White Matter Hyperintensity Context for Enhanced Pathological Segmentation via Multi-Class Deep Learning
Mahdi Bashiri Bawil - Mousa Shamsi - Ali Fahmi Jafargholkhanloo - Abolhassan Shakeri Bavil
همآوایی در شبکهای جهانکوچک و متشکل از نورونهای ممریستوری
محمدمهدی شیرزاد - مهتاب مهراب بیک - سجاد جعفری
تحلیل محتوا و دادهکاوی نظرات کاربران ایرانی درباره برندهای آرایشی منتخب در شبکههای اجتماعی با هوش مصنوعی
بهزاد بالازاده - حسین بوداقی - نازلی قراچورلو
Effects of laminectomy on active-passive spine loads: a musculoskeletal finite element modeling investigation
Aida Ahmadi - Navid Arjmand - Parisa Azimi
نقش بازاریابی هوش مصنوعی در عملکرد استراتژیک با تاکید بر قصد خرید مصرف کننده در سایتهای فروش انلاین
اسماعیل محبی کندسری
بررسی رابطه عملکرد اجتماعی، زیست محیطی با عملکرد مالی شرکت های بورس اوراق بهادار تهران
بنفشه فهیمی نیری - حسین بوداقی خواجه نوبر
more
Samin Hamayesh - Version 42.5.2