0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Attentive Temporal Fusion Network (ATFNet) for Multi-frame Coronary Vessel Segmentation in X-ray Angiography
Authors :
Pouya Babaei
1
Farshad Almasganj
2
1- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
2- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
Keywords :
Attentive Temporal Fusion Network،Coronary vessel segmentation،X-ray coronary angiography،Spatial Attention Temporal Squeeze،Structured sparsity loss
Abstract :
X-ray coronary angiography remains the clinical gold standard for visualizing coronary lumen but presents major challenges for automated analysis: low vessel contrast, overlapping anatomy, catheter occlusion, breathing/heartbeat motion and extremely thin branching vessels that fracture easily in segmentation maps. To address these issues we propose ATFNet (Attentive Temporal Fusion Network), a compact UNet++–inspired architecture that ingests short temporal stacks (four successive frames) and fuses motion and appearance cues into a single 2-D prediction. Key components are (i) SATS (Spatial Attention Temporal Squeeze), a per-frame directional spatial attention and learned temporal fusion that compresses four frames into a channel-recalibrated 2-D representation; (ii) SE_ResBlock3D/2D units that provide residual learning with squeeze-and-excitation attention in the 3D encoder and 2D decoder; (iii) DSF (Deep Supervision Fusion), which combines coarse (spatial merge) and attentive (channel-reweighted) fine kernels from multiple decoder depths into one robust output; and (iv) a topology-aware StructuredSparsityLoss (BCE–Dice base + multi-scale tree norm) together with the Lion optimizer and scheduler to stabilise and accelerate training on modest clinical data. On a manually annotated clinical XCA set, ATFNet produces noticeably more continuous, less fragmented vessel masks and improved temporal stability compared with single-frame baselines; ablation studies confirm that SATS, DSF, SE-Res blocks and the Lion optimizer each contribute to the observed gains. These results indicate that compact, attention-augmented temporal fusion, combined with a tree-aware loss, can substantially improve coronary vessel continuity and segmentation fidelity in angiographic sequences.
Papers List
List of archived papers
تأثیر هوش مصنوعی بر طراحی ارگونومیک محیط کار: بررسی الگوریتمهای یادگیری ماشین و ایمنی تولید فولاد
معراج جلیلی - پوریا علیمرادی - فرید نصیریان
تحلیل مقایسهای طبقهبندهای یادگیری ماشین بر روی مجموعه داده MNIST
متین نهاوندی
Finite Element Analysis of Lumbar Spine Biomechanics Following Cement Augmentation with Different PMMA Volumes: A Comparison with Intact Spine
Reihane Yazdani - Mohammdjavad (Matin) EinaAfshar - Azadeh Ghoochani - Nima Jamshidi
Topology Optimization for Optimal Design of Human Tibial Fixation Plates toward Improving Biomechanical Compatibility
Aida Ahmadi - Taha Goudarzi
هیدروژل ژل شونده آنزیمی بر پایه ژلاتین برای استفاده در کاربردهای مهندسی بافت
وحیده ابراهیمی بختور - علی برادر خوش فطرت - الهام دهقانی
بررسی نقش روحیه مودیان مالیاتی بر اساس تیپهای شخصیتی در قصد فرار مالیاتی
سحر بخشی - مهدی ذوالفقاری - کیهان آزادی هیر
A Novel AR-Based Kalman Filtering Framework for ECG Enhancement
Hamed Danandeh Hesar
Dynamic Connectivity Reveals Transformative Power of Neurofeedback in Brain Functional Networks
Kasra Momeni - Gholam- Ali Hossein-Zadeh
Application of Nanomaterials in Biomaterials for the Regeneration of Bone and Cartilage Tissues
Behnaz Alijani - Niloufar Kazami
کاربرد هوش مصنوعی و شبکه های عصبی کانولوشنی در تشخیص سرطان ریه از تصاویر CT
فاطمه انتظاری
more
Samin Hamayesh - Version 42.4.6