0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Semi-Automatic Multi-Stage Artifact Removal in EEG During Subthreshold GVS: A Machine Learning Approach for Neuromodulation Studies
Authors :
Mahdi Babaei
1
Sepideh Hajipour Sardouie
2
Martin Keung
3
Varsha Sreenivasan
4
Hanaa Diab
5
Maryam S. Mirian
6
Martin J. McKeown
7
1- دانشکده برقوکامپیوتر، دانشگاه تهران
2- University of British Columbia
3- University of British Columbia
4- University of British Columbia
5- University of British Columbia
6- University of British Columbia
7- University of British Columbia
Keywords :
Parkinson’s disease،Galvanic vestibular stimulation،Neuromodulation،Artifact removal،EEG،biomarkers،Machine learning
Abstract :
Parkinson’s disease (PD) is characterized by widespread disruptions in neural oscillations and network dynamics, which can be captured through resting-state EEG biomarkers. Galvanic vestibular stimulation (GVS) has emerged as a promising noninvasive neuromodulation technique to modulate these neural patterns. However, EEG recordings during GVS are severely contaminated by high-amplitude stimulation artifacts, especially when exploring a wide range of stimulation protocols. In this study, we designed a data acquisition protocol involving 304 distinct subthreshold GVS waveforms, each with a unique temporal profile, to investigate their effects on brain activity. These stimuli induced strong artifacts in the EEG signal, particularly during the stimulation interval. To recover clean EEG signals, we developed a multi-stage preprocessing pipeline combining regression-based artifact suppression, canonical correlation analysis (CCA), and independent component analysis (ICA), supported by machine learning classifiers for automatic detection and removal of GVS, EOG, and EMG artifacts. We evaluated the effectiveness of this pipeline through classification of EEG signals from PD patients and healthy controls across three temporal segments: pre-stimulation (Pre-stim), stimulation (Stim), and post-stimulation (Post-stim). Despite the intense artifacts in the Stim interval, classification accuracy reached 82.46%, closely matching the performance in Pre-stim (85.06%) and Post-stim (91.67%) intervals. This confirms that the artifact removal process successfully preserved disease-relevant neural information even during active stimulation. Beyond classification, we conducted additional evaluations including temporal consistency analysis of biomarkers, correlation of model coefficients across intervals, and visual inspection of signal quality. These assessments demonstrated that the cleaned EEG signals retained physiologically meaningful patterns and stable biomarker profiles across time. Our findings show that EEG signals recorded during GVS can be reliably cleaned and analyzed, enabling rapid screening of stimulation protocols and paving the way for personalized neuromodulation strategies in Parkinson’s disease.
Papers List
List of archived papers
Predictive Modeling of Astronaut Skin Microbiome Changes Using Machine Learning on NASA Multi-Omics Data
Mahdi Ansari - Abolfazl Hajihashemi - Mohammad Rafienia
Multi-Objective Optimization of the Impeller of a mini Blood Pump: Balancing Outlet Pressure and Scalar Shear Stress
Reza Sahebi-Kuzeh kanan - Hanieh Niroomand-oscuii - Habib Badri Ghavifekr - Farzan Ghalichi
شبیه سازی عددی انقباض بطن راست قلب جنین انسان به روش تعامل سیال و جامد
سیده کیمیا مرتضوی فارسانی - هانیه نیرومند اسکوئی - بهروز جعفرزاده - محمد حسن فردوسی
هوش اخلاقی: مبانی نظری، مؤلفهها و کاربردها در پرتو دیدگاههای بوربا و لنیک و کیل
طیبه یگانه
ارائه مدل E-UNETR2D جهت قطعه بندی عروق کرونر از روی تصاویر سی تی آنژیوگرافی
مصطفی رجب زاده - فواد قادری - حمیدرضا پورعلی اکبر - نصرالله مقدم چرکری
تاثیر استفاده از هوش مصنوعی بر تصمیمات مالی شرکتهای بیمه
مسعود سبزچی دهخوارقانی - میترا زابلی پیله رود
ارزیابی عملکرد در سازمانهای پست مدرن
مهدی خضوعی
تحلیل تنش روتور توربین گازی به کمک آنالیز حساسیت
پروانه امجدیان
Finite Element Analysis of Mechanical Stability in Hip Joint Implants: A Comparative Study of Ti-6Al-4V and Ti-13Nb-13Zr Alloys
Mohammad Amin Parsaei Tashi - Mohammad Hagh Panahi
تاثیر ویژگی های هیئت مدیره بر ابهام در اطلاعات حسابداری شرکت ها
ابراهیم نویدی عباسپور - سمیه ملازاده طسمالو
more
Samin Hamayesh - Version 42.5.2