0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Investigating a Real-time sEMG-based Approaches for Grasping Recognition
Authors :
Monire Ameri Haftador
1
Ali Akbari
2
Mehran Jahed
3
1- دانشگاه صنعتی شریف، تهران، ایران
2- دانشگاه صنعتی شریف، تهران، ایران
3- دانشگاه صنعتی شریف، تهران، ایران
Keywords :
Hand Grasping Recognition،Surface Electromyography (sEMG)،Real-Time Systems،Short-time Fourier Transform (STFT)،Convolutional Neural Networks (CNN)
Abstract :
To fully exploit real-time prosthetics and exoskeleton assist devises, human-machine interfaces that can effectively deduce related activity and intent are essential. Surface electromyography (sEMG) provides a well-established non-invasive method for this purpose, yet two key barriers to its broad adoption are attaining recognition latency well below 200ms and preserving accuracy in presence of signal drift. In order to describe an orderly solution to these issues, this paper is a comprehensive assessment of deep learning and conventional algorithms. To establish a comprehensive scheme for targeted gesture, data was meticulously collected from individuals in the biomedical engineering lab. Furthermore, to be able to contrast the proposed method against the already reported work, a well-established publicly available dataset, namely EMG-EPN-612 was utilized. To achieve appropriate real-time accuracy, commonly used classifiers, namely Support Vector Machine (SVM), Random Forest, and Convolutional Neural Networks (CNN) were implemented and compared based on these metrics. Input was rigorously evaluated in three forms, processed signals, handcrafted features, and Short-Time Fourier Transform (STFT) images, in a bid to determine the optimal strategy. Although all these models were shown to support the required real-time constraint, however only the CNN model applied to the STFT inputs achieved the acceptable 92% accuracy on the EMG-EPN-612 dataset, as compared to SVM applied to handcrafted features of 84% accuracy on the recorded dataset. These results provide first-time explanation and trade-off between model complexity and computation cost, and required accuracy. This research provides useful recommendations that further assist in developing more effective, responsive, and accessible hand assist devices and prosthetics.
Papers List
List of archived papers
A Comparative Analysis of Simulated and Experimental Acoustic and Thermal Behavior of HIFU
Maryam Fazeli - Remi Souchon - Cyril Lafon - Mehran Jahed
Improved Metric for Classification of Nearby Reaching Targets: A Distance-Weighted Accuracy Approach
Zahra Dayani - Ali Maleki - Ali Fallah
رابطه میان ماکیاولیسم و بی طرفی حسابرس
میر امید یوسفی شارمی - بهمن بنی مهد - مهدی مرادزاده فرد - بهرام همتی
تأثیر تنوع در ترکیب اعضای هیئت مدیره بر کارایی سرمایه گذاری
محسن بزرگی
Evaluating and Comparing Artificial Intelligence Tools in Solving Mathematical Problems
Marziyeh Felahat - Hossein Gholamalinejad
فناوری اطلاعات و ارتباطات و آموزش حسابداری
عبدالحسین علی پور - رسول ناصرحجتی رودسری - نسیم دانش
کاربردهای هوش مصنوعی و یادگیری عمیق در تشخیص و پیشبینی بیماریها
علی فرزین
مهندسی مالی اسلامی: چارچوبی برای توسعه پایدار، نوآوری و عدالت اقتصادی در نظام مالی اسلامی
مهدی زینالی - رسول قوسینی - مرتضی نوروززادبناء
تاثیر اشتراک گذاری دانش در رسانه های اجتماعی بر توسعه کسب و کارهای کوچک و متوسط تولیدات نوآورانه
حسین الف نژاد - حسین بوداقی خواجه نوبر
تحلیل هوش مصنوعی برای کاربردهای انسانی
حمداله مهرآیین
more
Samin Hamayesh - Version 42.5.2