0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Investigating a Real-time sEMG-based Approaches for Grasping Recognition
Authors :
Monire Ameri Haftador
1
Ali Akbari
2
Mehran Jahed
3
1- دانشگاه صنعتی شریف، تهران، ایران
2- دانشگاه صنعتی شریف، تهران، ایران
3- دانشگاه صنعتی شریف، تهران، ایران
Keywords :
Hand Grasping Recognition،Surface Electromyography (sEMG)،Real-Time Systems،Short-time Fourier Transform (STFT)،Convolutional Neural Networks (CNN)
Abstract :
To fully exploit real-time prosthetics and exoskeleton assist devises, human-machine interfaces that can effectively deduce related activity and intent are essential. Surface electromyography (sEMG) provides a well-established non-invasive method for this purpose, yet two key barriers to its broad adoption are attaining recognition latency well below 200ms and preserving accuracy in presence of signal drift. In order to describe an orderly solution to these issues, this paper is a comprehensive assessment of deep learning and conventional algorithms. To establish a comprehensive scheme for targeted gesture, data was meticulously collected from individuals in the biomedical engineering lab. Furthermore, to be able to contrast the proposed method against the already reported work, a well-established publicly available dataset, namely EMG-EPN-612 was utilized. To achieve appropriate real-time accuracy, commonly used classifiers, namely Support Vector Machine (SVM), Random Forest, and Convolutional Neural Networks (CNN) were implemented and compared based on these metrics. Input was rigorously evaluated in three forms, processed signals, handcrafted features, and Short-Time Fourier Transform (STFT) images, in a bid to determine the optimal strategy. Although all these models were shown to support the required real-time constraint, however only the CNN model applied to the STFT inputs achieved the acceptable 92% accuracy on the EMG-EPN-612 dataset, as compared to SVM applied to handcrafted features of 84% accuracy on the recorded dataset. These results provide first-time explanation and trade-off between model complexity and computation cost, and required accuracy. This research provides useful recommendations that further assist in developing more effective, responsive, and accessible hand assist devices and prosthetics.
Papers List
List of archived papers
A Review of Large Language Models in Medicine: Applications, Challenges, and Future Directions
Elham Shameli - Seyed Mohsen Mirhosseini
مقایسه روشهای مختلف دوخت تاندون فلکسور دست با استفاده از آنالیز اجزای محدود
امیررضا کاظمی - محمد جعفری - محمد مهدی جلیلی - سید حسین سعید بنادکی
Magnetic Catheter Robot with Reduced Friction for Endovascular Minimally Invasive Access
Sina Eskandary - Mohammad Amin Salati - Rezayat Parvizi - Farhang Abbasi
ارائه مدل رتبه بندی مشتریان اعتباری بانکی با استفاده از داده کاوی و منطق فازی :مطالعه موردی بانک خصوصی در ایران
محمد صالح کتابی
کاربرد هوش مصنوعی در کنترل کیفیت و بهره وری :رویکرد های علمی چالش ها و حاکمیت مسئولانه در صنعت
سجاد یوسفی - مریم پورنجف - مرضیه شریفی - سیده مبینا موسوی
هوش مصنوعی در توسعه علوم پایه: راهکارهای عملی برای تحقق تحول علمی و صنعتی
سارا سهیلی
افزایش پیش بینی بازار سهام از طریق هوش مصنوعی
سهیلا صمدی گلوجه - اسما حیدری پناه - زهرا علی لیواری - فاطمه خالقیان
Dynamic Classification of Resting-State EEG Using Adaptive Functional Connectivity in Mild Traumatic Brain Injury
Farzaneh Manzari - Peyvand Ghaderyan
چارچوب سلسلهمراتبی مبتنی بر مدل انتشار شرطی و شبکه پیشبینیکننده برای تولید و بازشناسی توامان حالات چهره
علی محمدپزنده - عمادالدین فاطمیزاده
A vortex-promoting cross-junction microchannel for efficient hydroporation in immunotherapy applications
Soheil Mahdavi - Zohre Nazemi Dehkordi - Ali Abouei Mehrizi
more
Samin Hamayesh - Version 42.5.2