0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EEG-based Schizophrenia Detection Using Spectral, Entropy, and Graph Connectivity Features with Machine Learning
نویسندگان :
Nazila Ahmadi Daryakenari
1
Seyed Kamaledin Setarehdan
2
1- دانشکده برقوکامپیوتر، دانشگاه تهران
2- دانشکده برقوکامپیوتر، دانشگاه تهران
کلمات کلیدی :
Artificial Intelligence،Bandpower،EEG،Functional Connectivity،Graph Features،Machine Learning،Multiscale Permutation Entropy،Schizophrenia Detection
چکیده :
Schizophrenia is a serious mental disorder that changes the way people think, perceive, and manage daily life. Getting the diagnosis right is critical for proper treatment, but in practice it is often difficult. Current evaluations depend mostly on a clinician’s judgment, and the overlap of symptoms with bipolar disorder or major depression makes the task even harder. EEG offers a safe and noninvasive way to study brain activity, yet no single EEG feature has been reliable enough to stand on its own. This makes it important to look at integrative approaches that bring together different aspects of brain dynamics. In this study, we analyzed EEG features to distinguish patients with schizophrenia from healthy controls. Spectral power was measured across δ, θ, α, β, and γ bands. Temporal irregularity was measured with Multiscale Permutation Entropy (MPE), its first application to EEG in schizophrenia. Functional connectivity was estimated with the weighted Phase Lag Index in θ, α, and β bands, followed by the extraction of graph measures including global efficiency, clustering coefficient, characteristic path length, and mean strength. These features were used to train Random Forest, Multi-Layer Perceptron, and Support Vector Machine classifiers. Among the models, Random Forest achieved the most reliable performance, reaching 99.7% accuracy under stratified 5-fold validation and 99.6% under leave-one-subject-out validation. Feature analysis showed that connectivity in θ and α bands contributed most strongly to classification. Topographic maps of θ, α, and β activity also revealed regional group differences. Overall, the results suggest that combining spectral, entropy, and connectivity measures provides a robust framework for EEG-based detection of schizophrenia. Such integrative approaches may support the development of reliable biomarkers and bring EEG closer to practical use in psychiatric care.
لیست مقالات
لیست مقالات بایگانی شده
Recovery of Hand Motor Function in Children with Hemiparetic Cerebral Palsy using an Interactive Computer Game Combined with Mechanoreceptor Stimulation: A Pilot Study
Mobina Ramezani - Shahed Salehzehi - Parisa Hosseini - Zahra Alizadeh Sarborj - Ghazal Mohammadzadeh - Hamid Reza Kobravi - Narges Hashemi - Mehran Beiraghi Toosi - Javad Akhondian
ارتباط بین عملکرد پایداری و سرمایه گذاری بیشتر و کمتر از حد
سعید انور خطیبی - علی زارع بهتاشی
Optimal Control and Emergence of Kinematic Synergies in Underactuated Biped Locomotion
Mahdi Alipoor - Masoud Yousefi - Farzam Farahmand
Comparative Evaluation of Feature Selection Techniques for Six-Month Mortality Prediction in Heart Failure Patients
Parsa Haghighatgoo - Somayeh Afrasiabi
Antimicrobial and Bioactivity Evaluation of Laser-Modified Biodegradable Magnesium Alloy Coated with Chitosan–Graphene Oxide
Seyed Alireza Ensaniat - Ali Safary - Farid Naeimi - Hamid Reza Bakhsheshi Rad - Monireh Ganjali
پیاده سازی iot در زنجیره تامین، چالشها و فرصتها با در نظر گرفتن industry 4
مهدی رضایی - سلمان ولی محمدی
بررسی تأثیر قدرت رقابتی و ریسک ورشکستگی بر اعتبار تجاری شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
فاطمه تسلیمی
بهبود راهکار انتخاب ویژگی ترکیبی با ارزیابی یکپارچه روابط خطی و غیرخطی ویژگیها
سید مجتبی سیف
تاثیر هوش مصنوعی در کیفیت خدمات آنلاین بانکی
بهارک یادگار جمشیدی - زهرا شرقی
هوش اخلاقی: مبانی نظری، مؤلفهها و کاربردها در پرتو دیدگاههای بوربا و لنیک و کیل
طیبه یگانه
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1