0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EEG-based Schizophrenia Detection Using Spectral, Entropy, and Graph Connectivity Features with Machine Learning
نویسندگان :
Nazila Ahmadi Daryakenari
1
Seyed Kamaledin Setarehdan
2
1- دانشکده برقوکامپیوتر، دانشگاه تهران
2- دانشکده برقوکامپیوتر، دانشگاه تهران
کلمات کلیدی :
Artificial Intelligence،Bandpower،EEG،Functional Connectivity،Graph Features،Machine Learning،Multiscale Permutation Entropy،Schizophrenia Detection
چکیده :
Schizophrenia is a serious mental disorder that changes the way people think, perceive, and manage daily life. Getting the diagnosis right is critical for proper treatment, but in practice it is often difficult. Current evaluations depend mostly on a clinician’s judgment, and the overlap of symptoms with bipolar disorder or major depression makes the task even harder. EEG offers a safe and noninvasive way to study brain activity, yet no single EEG feature has been reliable enough to stand on its own. This makes it important to look at integrative approaches that bring together different aspects of brain dynamics. In this study, we analyzed EEG features to distinguish patients with schizophrenia from healthy controls. Spectral power was measured across δ, θ, α, β, and γ bands. Temporal irregularity was measured with Multiscale Permutation Entropy (MPE), its first application to EEG in schizophrenia. Functional connectivity was estimated with the weighted Phase Lag Index in θ, α, and β bands, followed by the extraction of graph measures including global efficiency, clustering coefficient, characteristic path length, and mean strength. These features were used to train Random Forest, Multi-Layer Perceptron, and Support Vector Machine classifiers. Among the models, Random Forest achieved the most reliable performance, reaching 99.7% accuracy under stratified 5-fold validation and 99.6% under leave-one-subject-out validation. Feature analysis showed that connectivity in θ and α bands contributed most strongly to classification. Topographic maps of θ, α, and β activity also revealed regional group differences. Overall, the results suggest that combining spectral, entropy, and connectivity measures provides a robust framework for EEG-based detection of schizophrenia. Such integrative approaches may support the development of reliable biomarkers and bring EEG closer to practical use in psychiatric care.
لیست مقالات
لیست مقالات بایگانی شده
Impact of Impeller Blade Number on the Hemodynamic Performance of Specially Designed Mini VAD
Nasser Alizadeh - Hanieh Niroomand-Oscuii - Farzan Ghalichi
تأثیر هوش مصنوعی بر طراحی ارگونومیک محیط کار: بررسی الگوریتمهای یادگیری ماشین و ایمنی تولید فولاد
معراج جلیلی - پوریا علیمرادی - فرید نصیریان
هوش اخلاقی: مبانی نظری، مؤلفهها و کاربردها در پرتو دیدگاههای بوربا و لنیک و کیل
طیبه یگانه
Argeted Cancer Treatment Through Tissue Engineering and Biomaterial-Based Drug Delivery Systems:
Laleh Etemad-Ghazani - Mina Saddi-Khelejan - Mahdi Hasanpour
Synthesis and Swelling Behavior of pH-Sensitive Chitosan/Polyvinylpyrrolidone Hydrogels for Drug Delivery Applications
Shaghayegh Zameni Nir - Hanieh Shokrkar - Niloofar Nasirpour
CRAFT-Flow: Cross-Attentional Refinement for Robust Optical Flow Estimation in Cardiac MRI via Deep Learning
Hamed Aghapanah Roudsari - Reza Ashiri Gudarzi - Morteza Choubin
Enhancing Drug–Target Affinity Prediction with Non-Local Block Graph Neural Networks
Reza Tahmasebi - Eghbal Mansoori - Armin Piashehvar - Abbas Mehrbaniyan
Super-Resolution Generative Adversarial Network for Photothermal Optical Coherence Tomography Signal Enhancement
Amirhossein Osooli - Mohammadhossein Salimi
پیاده سازی مسیر یابی هوشمند بر اساس انرژی برای شبکه حسگر بی سیم
حمداله مهرآیین
Toward Precision Psychiatry: Differentiating Depression and Psychosis Using EEG-Based Machine Learning Models
Vahid Asayesh - Mehdi Dehghani - Majid Torabi - Sepideh Akhtari-Khosroshahi - Maedeh Akhtari-Khosroshahi - Sebelan Daneshvar
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2