0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Toward Precision Psychiatry: Differentiating Depression and Psychosis Using EEG-Based Machine Learning Models
نویسندگان :
Vahid Asayesh
1
Mehdi Dehghani
2
Majid Torabi
3
Sepideh Akhtari-Khosroshahi
4
Maedeh Akhtari-Khosroshahi
5
Sebelan Daneshvar
6
1- NPCindex Research Company, Asayesh Psychiatric Clinic
2- NPCindex Research Company
3- NPCindex Research Company, Asayesh Psychiatric Clinic
4- NPCindex Research Company
5- NPCindex Research Company
6- Department of Electrical and Computer Engineering, Brunel University
کلمات کلیدی :
Major Depressive Disorder،Psychosis،Machine Learning،Statistical Analysis،Differential Diagnosis
چکیده :
Accurate differential diagnosis of major depressive disorder, psychosis, and psychotic depression remains a major challenge in psychiatry due to overlapping clinical symptoms and the reliance on subjective assessment tools. This study aimed to identify objective EEG-based neuromarkers that distinguish between these three diagnostic groups using quantitative EEG features and machine learning. Resting-state EEG was collected from 60 medication-free adult patients clinically diagnosed via DSM-based psychiatric interviews. A total of 26 linear and nonlinear features, including relative power, cordance, alpha peak frequency, Lempel–Ziv complexity, largest Lyapunov exponent, and sample entropy, were extracted across 19 scalp channels. Statistical group comparisons with FDR correction identified significant feature–channel combinations, which were then ranked using the MRMR algorithm. Stepwise feature inclusion and classification with SVM, KNN, and MLP were performed. Results showed that 42 selected features achieved optimal accuracy, with KNN yielding 96.53±0.20% accuracy. These findings highlight the potential of EEG neuromarkers to support precision psychiatry and improve diagnostic specificity.
لیست مقالات
لیست مقالات بایگانی شده
Multi-Level Driver Fatigue Detection Using EEG Signals with CNN–LSTM Models in a Compressed Sensing Framework
Sobhan Sheykhivand - Nastaran Khaleghi
Automated Kinematic Analysis of Barbell Curl Using Custom IMU and Deep Learning Techniques
Mohammad Khalfe Nilsaz - Elham Shirzad - Ali Fahim
Biomechanical Contrast Between Native and Decellularized Triple-Negative Breast Tumors in Mice
Mohammad Javad Farjam - Saman Asadi - Ashkan Azimzadeh - Saeid Amanpour - AbdolMohammad Kajbafzadeh - Mohammad Ali Nazari
Digital Technology and Supply Chain Transformation: A Qualitative and Analytical Approach
Elnaz Shakerifar
Edge AI for Real-Time UAV Data Processing
Mohammad Mahdi Salmani
استفاده از هوش مصنوعی در مدیریت منابع انسانی
مهدی محمدی امین - مهدی فرساد - هادی محمدی امین
عدم قطعیت سیاسی و سرعت تعدیل وجه نقد
مجتبی فلاحی نسب - ایمان داداشی - محمد جواد زارع بهنمیری
شیوه های حسابداری منابع انسانی و تاثیر آنها بر عملکرد مدیریت
مرضیه ساداتی
Shape Memory Polymer-Based Scaffolds for Bone Tissue Engineering
Farzad Fereidani Mohammadi - Zahra Mohammadi
تحلیل نقش هوش مصنوعی در تحول بازرگانی و مدیریت زنجیره تأمین: مطالعهی موردی گروه صنعتی مپنا
حسین بوذری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1