0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Goniometry and Electromyography Data Analysis for Knee Health Diagnosis using Machine Learning
نویسندگان :
Mohammad-Reza Sayyed Noorani
1
Zahra Mahmoudi Anzabi
2
Sara Sharifi
3
1- University of Tabriz
2- University of Tabriz
3- University of Tabriz
کلمات کلیدی :
Knee Health Diagnosis،Machine Learning،Feature Extraction،Goniometry،Surface Electromyography
چکیده :
In this study, we employed the Sánchez dataset [1] comprising synchronized knee goniometric measurements and surface electromyography (sEMG) recordings from major knee flexor and extensor muscles to develop a machine learning-based classification system for knee joint health assessment. The dataset included biomechanical data from 11 healthy controls and 11 participants with diagnosed knee pathologies. Our analysis focused only on the data collected during walking trials. Accordingly, training data prepared through kinematic monitoring of knee joint angles and subsequent segmentation of complete gait cycles - from initial heel-strike through terminal swing phase. Thus, we compiled 48 datasets from healthy controls and 173 datasets from participants with knee abnormalities. Each dataset included synchronized sEMG signals from four major muscles (rectus femoris, biceps femoris long head, vastus medialis, and semitendinosus) along with knee goniometry data, all of them were captured through complete gait cycles. Here, various combinations of statistical, temporal, and wavelet features using SVM, LDA, and KNN classifiers for knee health assessment were evaluated. Goniometric data alone achieved the best index with 97.7% accuracy (LDA/SVM models) when incorporating at least one feature from each type. For sEMG signal combinations, optimal performance (93.8% accuracy with LDA) was obtained using solely semitendinosus muscle data with complete feature sets. Comparative analysis revealed wavelet features as the least effective individually, while combined feature sets consistently yielded superior results. The sEMG signals from other individual muscles or their various combinations, regardless of feature selection approach, consistently demonstrated inferior classification performance.
لیست مقالات
لیست مقالات بایگانی شده
بررسی تاثیر انعطاف پذیری مالی بر رابطه بین مدیریت ریسک و اجتناب مالیاتی
علیرضا عظیمی ثانی - رضا پورتقی
یادگیری عمیق برای ادراک رباتیک مقاوم در محیط های غیرساختارمند
سجاد یوسفی - مریم پورنجف - سمیرا حسینی - سوسن نصرتی - سمیه باقری
تاثیر هوش مصنوعی و فناوری های نوین بر بهبود بودجهبندی دولتی و کنترل مالی
مهدی زینالی - بهزاد محمودی - سمیه علیمرادی اشقلو
طراحی مدل هوشمند در جهت رتبهبندی شعب شرکتهای بیمه
مسعود سبزچی دهخوارقانی - میترا زابلی پیله رود
Magnetic Catheter Robot with Reduced Friction for Endovascular Minimally Invasive Access
Sina Eskandary - Mohammad Amin Salati - Rezayat Parvizi - Farhang Abbasi
ارائه مدل یادگیری ماشین برای پیش بینی بازار مالی قیمت مسکن مبتنی بر یادگیری عمیق
زیبا نصیری - حسین اقبالی - محمدعلی اقبالی
Late Fusion-Based Deep Learning for Breast Cancer Classification in Mammography
Mehdi Baharloo - Ata Jodeiri
Exponential sliding mode controller to track the human upper limb during Topspin Forehand in Table Tennis
Erfan Sedaghat - Seyyed Arash Haghpanah
Investigation of the presence of movement intention during sequential hand movements using neurophysiological analyses of EEG signals
Elnaz Eilbeigi
Emotion Recognition from EEG signal using GA-FLANN with Whale Optimization Algorithm
Mohammadamir Razmi - Pouya Faridfar - Seyed Amirreza Navali Hosseini alavi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1