0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
GPU-Accelerated GRAPPA: A Fast Implementation Using PyTorch for MRI Reconstruction
نویسندگان :
Mehrdad Anvari-Fard
1
Mahdi Bazargani
2
Mohammad Javad Heidari
3
Hamid Soltanian-Zadeh
4
1- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
2- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
3- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
4- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
کلمات کلیدی :
GRAPPA،MRI Reconstruction،Deep Learning،FastMRI،GPU acceleration
چکیده :
GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) is a widely used algorithm in MRI parallel imaging that reconstructs accelerated MRI scans by estimating the unknown phase-encoding lines omitted during k-space data acquisition. Unlike SENSE (Sensitivity Encoding), which operates in the image domain, GRAPPA directly processes k-space data and offers high reconstruction quality without requiring prior knowledge of coil sensitivity maps, making it one of the most commonly used algorithms for MRI reconstruction in clinical practice. Recent MRI reconstruction trends increasingly combine classical methods with deep learning, either as end-to-end trainable networks or hybrid pipelines that use physics-based operators within learning frameworks. GRAPPA is often employed as a preprocessing step before feeding slice information into deep learning models for MRI reconstruction. Despite its effectiveness, GRAPPA is typically a time-consuming part of the training process. In this work, we leverage the GPU capabilities of the PyTorch library and employ several optimization techniques to accelerate the GRAPPA algorithm. Our implementation is compared against the PyGRAPPA repository, developed by Nicholas McKibben, using a subset of the NYU fastMRI dataset. The results demonstrate that our optimized implementation achieves more than 40-fold speedup, which is statistically significant (p < 0.01) while maintaining equivalent image quality with no significant differences in reconstruction metrics (p > 0.05).
لیست مقالات
لیست مقالات بایگانی شده
مقایسه تطبیقی پیشینه حاکمیت شرکتی در ایران و سایر کشورها
جمال خراسانی
Preparation of pH sensitive Carboxymethyl cellulose / Polyvinylpyrrolidone based hydrogels for drug delivery applications
Masoumeh Olad Mazraeh - Hanieh Shokrkar - Nilufar Nasirpur
Perfluorocarbon-Based Oxygenation Systems: From Foundational Principles to Revolutionary Applications in Cancer Therapy and Tissue Engineering
Gity Mirzaei - Zeinab Mazloumi - Ali Baradar Khoshfetrat
The Adaptive Approach of Ensemble Deep Learning Model in OCT Image Classification
Hamed Aghapanah Roudsari - Ali Ghaderian - Mrteza Choubin
تاثیر قابلیت مقایسه صورتهای مالی بر مربوط بودن اطلاعات حسابداری
محمد فرجی بنائی - نیما تمجیدی فر - امیرحسین قوچی
Robust Speckle Noise Reduction in IVUS Imaging: Advancing Autoencoders and Non-Local Means with Particle Swarm Optimization
Shirin Ashtari Tondashti - Navid Adib - Mehran Alyali - Mahdis Yaghoubi - Seyed Kamaledin Setarehdan
Finite Element Analysis of Ankle-Foot Orthosis (AFO): Influence of Shell and Insole Thickness Across Material Variants
Maryam Sheikhi - َAisan Rafiei - Nima Jamshidi
بررسی ارتباط بین ریسک پذیری شرکت و ضریب واکنش سود در شرکت های پذیرفته شده در بورس اوراق بهادار تهران
حسین بوداقی خواجهءنوبر - مینا محمدی
بررسی فرآیند مدیریت منابع انسانی بر عملکرد کارکنان سازمان مالیاتی با میانجی رضایت شغلی و تعدیلگری تعهد شغلی (مورد مطالعه: اداره امور مالیاتی تبریز)
پریسا صدری نوبرزاده - نیما صدری نوبرزاده
تأثیر حسابرسی صورتهای مالی بر بهبود عملکرد مدیران
ربابه جعفری آغویه - محمدرضا عباسی استمال
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1