0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
GPU-Accelerated GRAPPA: A Fast Implementation Using PyTorch for MRI Reconstruction
نویسندگان :
Mehrdad Anvari-Fard
1
Mahdi Bazargani
2
Mohammad Javad Heidari
3
Hamid Soltanian-Zadeh
4
1- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
2- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
3- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
4- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
کلمات کلیدی :
GRAPPA،MRI Reconstruction،Deep Learning،FastMRI،GPU acceleration
چکیده :
GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) is a widely used algorithm in MRI parallel imaging that reconstructs accelerated MRI scans by estimating the unknown phase-encoding lines omitted during k-space data acquisition. Unlike SENSE (Sensitivity Encoding), which operates in the image domain, GRAPPA directly processes k-space data and offers high reconstruction quality without requiring prior knowledge of coil sensitivity maps, making it one of the most commonly used algorithms for MRI reconstruction in clinical practice. Recent MRI reconstruction trends increasingly combine classical methods with deep learning, either as end-to-end trainable networks or hybrid pipelines that use physics-based operators within learning frameworks. GRAPPA is often employed as a preprocessing step before feeding slice information into deep learning models for MRI reconstruction. Despite its effectiveness, GRAPPA is typically a time-consuming part of the training process. In this work, we leverage the GPU capabilities of the PyTorch library and employ several optimization techniques to accelerate the GRAPPA algorithm. Our implementation is compared against the PyGRAPPA repository, developed by Nicholas McKibben, using a subset of the NYU fastMRI dataset. The results demonstrate that our optimized implementation achieves more than 40-fold speedup, which is statistically significant (p < 0.01) while maintaining equivalent image quality with no significant differences in reconstruction metrics (p > 0.05).
لیست مقالات
لیست مقالات بایگانی شده
Backward Walking Under Dual-Task Conditions Among Young Adults: A Potential Tool for Early Detection of Gait Instability and Fall Risk
Zahra Ouni - Hassan Khoudeh - Mina Niknam - Fariborz Rahimi
مروری سیستماتیک بر کاربرد هوش مصنوعی در تشخیص تهدیدات سایبری در زنجیره تأمین رایانش ابری
اسماعیل قاسمی - شاهین سمیع عادل
Addressing Class Imbalance Using Difficulty-based Oversampling with Variance Control
Zahra Asgharzadeh Bonab - Sina Shamekhi
Late Fusion-Based Deep Learning for Breast Cancer Classification in Mammography
Mehdi Baharloo - Ata Jodeiri
Toward Precision Psychiatry: Differentiating Depression and Psychosis Using EEG-Based Machine Learning Models
Vahid Asayesh - Mehdi Dehghani - Majid Torabi - Sepideh Akhtari-Khosroshahi - Maedeh Akhtari-Khosroshahi - Sebelan Daneshvar
رابطه میان ماکیاولیسم و بی طرفی حسابرس
میر امید یوسفی شارمی - بهمن بنی مهد - مهدی مرادزاده فرد - بهرام همتی
بررسی روش های تشخیص فیشینگ با استفاده از یادگیری ماشین
حامد منکرسی - غلامرضا احمدی
بررسی نقش رهبران سازمانها و کاربرد هوش مصنوعی در کسب و کارها
حسین علی آبادی
Ethical Challenges in the Use of Artificial Intelligence: Risks, Frameworks, and Responsible Innovation
Seyed Javad Roudehchi Tabrizi - Samar Goldouz
تشخیص بیماری سرطان دهانه رحم به کمک شبکه عصبی با جمع آوری داده ها به صورت برخط
وحیدرضا افشین - سعیده کبیری راد - حمید ظهیری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2