0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Mitigating MRI Domain Shift in Sex Classification: A Deep Learning Approach with ComBat Harmonization
Authors :
Peyman Sharifian
1
Mohammad Saber Azimi
2
Masoud Noroozi
3
Alireza Karimian
4
Hossein Arabi
5
1- دانشگاه اصفهان
2- دانشگاه شهید بهشتی
3- دانشگاه اصفهان
4- دانشگاه اصفهان
5- دانشگاه ژنو
Keywords :
Deep Learning،Sex Classification،Combat Harmonization،Domain Adaptation،Magnetic Resonance Imaging
Abstract :
Deep learning models for medical image analysis often suffer from performance degradation when applied to data from different scanners or protocols, a phenomenon known as domain shift. This study investigates this challenge in the context of sex classification from 3D T1-weighted brain magnetic resonance imaging (MRI) scans using the IXI and OASIS3 datasets. While models achieved high within-domain accuracy (around 0.95) when trained and tested on a single dataset (IXI or OASIS3), we demonstrate a significant performance drop to chance level (about 0.50) when models trained on one dataset are tested on the other, highlighting the presence of a strong domain shift. To address this, we employed the ComBat harmonization technique to align the feature distributions of the two datasets. We evaluated three state-of-the-art 3D deep learning architectures (3D ResNet18, 3D DenseNet, and 3D EfficientNet) across multiple training strategies. Our results show that ComBat harmonization effectively reduces the domain shift, leading to a substantial improvement in cross-domain classification performance. For instance, the cross-domain balanced accuracy of our best model (ResNet18 3D with Attention) improved from approximately 0.50 (chance level) to 0.61 after harmonization. t-SNE visualization of extracted features provides clear qualitative evidence of the reduced domain discrepancy post-harmonization. Cross-domain balanced accuracy improved from ~0.50 to 0.61 after ComBat, a modest yet meaningful gain that moves the model from chance-level failure toward more reliable generalization while remaining below clinical utility. This work underscores the critical importance of domain adaptation techniques for building robust and generalizable neuroimaging AI models.
Papers List
List of archived papers
Comparative Hemodynamic Analysis of Bicuspid and Tricuspid Aortic Valves Through CFD Simulation
Taha Samiazar - Mouoode Allahyari - Reyhaneh Mosaferchi - Julio Garcia Flores - Nasser Fatouraee
Enhancing Audit Quality through Artificial Intelligence
Ebrahim Navidi Abbasspoor - Elnaz Maleki
The Influence of Insertion-Induced Prestress and Viscoelastic Properties in Fixational Stability of Pedicle Screws in UHWMPE block: A Finite Element Study
Ahmad Babazadeh Gh - Mohammadjavad (Matin) Einafshar - Ata Hashemi
بررسی رابطه بین کیفیت حسابرسی، تأمین مالی بدهی و مدیریت سود در مراحل مختلف چرخه عمر شرکتها
محدرضا پژوهی
بررسی تأثیر قدرت رقابتی و ریسک ورشکستگی بر اعتبار تجاری شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
فاطمه تسلیمی
ECG-Based Detection of Acute Myocardial Infarction Using a Wrist-Worn Device: a Machine Learning Approach
Tania Hossein Khani - Amir hossein Tajarrod - Asghar Zarei - Mousa Shamsi
هوش مصنوعی در ارزیابی عملکرد کارکنان دولت: چالشها، فرصتها و پیامدهای اخلاقی
حسین بوداقی خواجهءنوبر - بهارک یادگار جمشیدی
The role of data analysis and financial engineering in managing industrial projects with a circular economy approach
Mohammad Reza Taheri Oshtobin - Seyed Ali Ghamiloei
Modulation of EEG Connectivity by Insular Cortex Stimulation: Frequency-Specific Effects and Interoceptive Implications
Ramin Aghili Karampour - Alireza Fallahi - Reza Kazemi
A Survey on Cardiac MRI Segmentation: From Classical Methods to State-of-the-art Deep Learning
Hamed Aghapanah Roudsari - Reza Saboori Amleshi - Ali Saeeidi Rad - Masoud Noroozi
more
Samin Hamayesh - Version 42.5.2