0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
The Influence of Insertion-Induced Prestress and Viscoelastic Properties in Fixational Stability of Pedicle Screws in UHWMPE block: A Finite Element Study
Authors :
Ahmad Babazadeh Gh
1
Mohammadjavad (Matin) Einafshar
2
Ata Hashemi
3
1- Amirkabir University of Technology
2- Aalborg University, Denmark
3- Amirkabir University of Technology
Keywords :
Finite element analysis،Natural frequency،Modal analysis،Pedicle screw،UHMWPE،Viscoelasticity،Prestress،Prony series
Abstract :
Pedicle screws are critical components in spinal fixation systems, and the stiffness of the screw-bone interaction plays a crucial role in implant success. There are various ways to investigate screw-bone bonding strength, one of which is vibration-based diagnosis of screw-bone structure. While finite element modeling can reduce the time and give the ability to model different geometries and other conditions, properly modeling the vibration behavior of the screw inside bone comes with difficulties. This study investigates the influence of insertion-induced prestress and the viscoelastic properties of ultra-high molecular weight polyethylene (UHMWPE) bone-analog material on the natural frequency of a pedicle screw–block assembly using finite element analysis (FEA). Three models were developed: Model I (linear elastic without prestress), Model II (linear elastic with prestress), and Model III (viscoelastic without prestress). A 3D geometry of the screw and UHMWPE block was constructed, and frequency analysis was performed at three insertion depths (10 mm, 20 mm, and 30 mm). Simulation results were compared with previously published experimental data. Model I underestimated the natural frequency at all depths around 14-30%, while Model II, accounting for screw insertion-induced radial prestress, improved prediction accuracy, reducing errors down to under 18%. Model III, which captured UHMWPE's viscoelastic behavior using a Prony series, showed the closest agreement with experimental data, with errors under 7%. The results highlight the importance of modeling both viscoelasticity and insertion-related prestress to accurately predict dynamic behavior. These findings are useful for improving finite element modeling of modal analysis methods to investigate screw stability in spinal implants.
Papers List
List of archived papers
نظریه پایداری و ذینفعان: دیدگاه فرآیندی
رعنا شهداور - لیلا مهدیوند - مریم حسن پور
Comparative Analysis of Machine Learning and Deep Learning Models for Epileptic Seizure Detection Using the CHB-MIT EEG Dataset
Pouya Taghipour Langrodi - Amirsadra Khodadadi - Mahtab Dastranj - Golnaz Baghdadi
حسابداری مصرف منابع
مهدی هاتفی - صبا نورالهی
تحلیل محتوا و دادهکاوی نظرات کاربران ایرانی درباره برندهای آرایشی منتخب در شبکههای اجتماعی با هوش مصنوعی
بهزاد بالازاده - حسین بوداقی - نازلی قراچورلو
بازسازی و تحلیل سیگنال ECG از نسخههای چاپی نوار قلب بهمنظور طبقهبندی خودکار بیماریهای ایسکمیک قلب با استفاده از شبکههای عصبی کانولوشنی
فاطمه کیخا - مهدیه قاسمی - سید مهدی صالحی
ارزیابی تأثیر حسابداری مدیریت بر افزایش سرمایه فکری سازمانهای دولتی کشور
حسین بوذری
بکارگیری هوش مصنوعی در فرآیندهای استخدام: ملاحظات اخلاقی
میررضا سیدقمی - بیتا دلنواز
Optimization of AODV Routing Protocol in Ad Hoc Networks Using Particle Swarm Optimization Algorithm
Jalileh Alboshokeh - Touraj Mohammadpour
نقش هوش مصنوعی در تشخیص و پیشگیری از تقلب در خدمات مالی
مهدی محمدی امین - مهدی فرساد - هادی محمدی امین
An RZ-OOK Modulation Technique for Joint Data Rate and Output Power Tuning in Biomedical Applications
Tayebeh Azadmousavi - Esmaeil Najafiaghdam
more
Samin Hamayesh - Version 42.5.2