0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Comparative Analysis of Machine Learning and Deep Learning Models for Epileptic Seizure Detection Using the CHB-MIT EEG Dataset
Authors :
Pouya Taghipour Langrodi
1
Amirsadra Khodadadi
2
Mahtab Dastranj
3
Golnaz Baghdadi
4
1- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
2- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
3- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
4- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
Keywords :
Epilepsy،Neural Networks،Seizure Detection،Electroencephalography،EEG،Deep Learning،Machine Learning،LSTM
Abstract :
Epilepsy is one of the most common neurological disorders that usually comes with sudden and unpredictable seizures and can severely affect the quality of life of patients. This study aims to design and evaluate different artificial approaches for automated seizure detection using EEG signals from the CHB-MIT dataset. This dataset contains 23 patients suffering from epileptic seizures, including boys and girls aged between 1.2 to 22 years old. Feature extraction was performed across time, frequency, and time-frequency domains. Eight classifiers were implemented in this study, including four machine learning algorithms (SVM, KNN, Decision Tree, and naïve Bayes) and four deep learning architectures (Artificial Neural Network, LSTM, TCN, and Transformer). The results demonstrated that the LSTM and TCN models outperformed other classifiers in detecting the preictal and ictal stages, achieving an accuracy of 96.0% and 97.3% with the sensitivity of 93.5% and 90.5%. Moreover, ANN and Transformer achieved 94.8% and 93.2% accuracy. In contrast, SVM, KNN, DT, and NB represented 93.1%, 92.4%, 81.2%, and 71.9% in accuracy. By preparing a uniform data preparation baseline for the CHB-MIT dataset, this study made an identical comparison between machine learning and deep learning models to propose the best approach for epileptic seizure detection.
Papers List
List of archived papers
ارزیابی کارایی روشهای اصلاح پراکندگی در تصویربرداری SPECT قلب همزمان دو ایزوتوپی
بهاره جودی ثمرین - مهسا نوری اصل
Argeted Cancer Treatment Through Tissue Engineering and Biomaterial-Based Drug Delivery Systems:
Laleh Etemad-Ghazani - Mina Saddi-Khelejan - Mahdi Hasanpour
بررسی عملکرد یادگیری عمیق و تاثیر آن بر پزشکی هوشمند
فاطمه علی فرسنگی - سوده شادروان - مهدی نجفی فرد
نظریه بازی در کارآفرینی: مروری بر ادبیات
رعنا شهدآور - فاطمه اصدقی - فائزه فتحی
Region-Specific EEG Channel-Based Emotion Detection using Bi-directional Deep Neural Networks
Mahdi Jafari Asl - Sina Shamekhi - Fatemeh Shalchizadeh
نقش هوش مصنوعی در تحول تجارت الکترونیک: مروری بر روشها و چالشها
الهام آزادی مرند
MRI to SPECT Image Translation for Parkinson's Disease Diagnosis
Pegah Zandian PourEsfahani - Abolfazl Adib Almojahedi - Seyyede Zohreh Seyyed Salehi
بررسی تأثیر کیفیت حسابرسی بر قدرت پیشبینی اطلاعات حسابداری باتوجه به نقش تعدیلگر بحران کمآبی
زهره حاجیها - النا خان لاریان
روش ترکیبی مبتنی بر ماشین بردار پشتیبان با الگوریتم بهینه سازی کلاغ برای دسته بندی متون
آیسودا علیزاده - فرهاد سلیمانیان قره چپق
تأثیرات دیجیتالسازی بر مدلهای کسبوکار و استراتژیهای بازار.
سجاد یوسفی - مریم پورنجف - سیده محدثه موسوی - نازنین حسنوند
more
Samin Hamayesh - Version 42.4.6