0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Predicting Sleep Efficiency and Apnea Index Using ECG-Derived and Sleep Quality Features: A Machine Learning Approach
Authors :
Mahla Khodaverdi
1
Raheleh Davoodi
2
1- دانشگاه شهید بهشتی تهران
2- دانشگاه شهید بهشتی تهران
Keywords :
Sleep efficiency،Apnea index،ECG،Machine learning،Feature selection
Abstract :
Sleep quality and obstructive sleep apnea profoundly influence cardiovascular function, cognition, and overall well-being, yet conventional monitoring approaches remain largely invasive or cumbersome, underscoring the imperative for streamlined, non-invasive alternatives. Herein, we present a machine learning framework that synergistically integrates electrocardiogram (ECG)-derived features with sleep quality metrics to forecast sleep efficiency and apnea-hypopnea index (AHI). Drawing upon the ECSMP (A Dataset on Emotion, Cognition, Sleep, and Multi-Modal Physiological Signals) dataset—encompassing recordings from 89 healthy participants—we curated a subset of 33 subjects whose data exhibited complete and unimpaired capture across all ECG-sleep modalities, thereby ensuring analytical fidelity; incomplete records from the remaining participants, attributable to recording artifacts or procedural inconsistencies, were judiciously excluded to uphold data integrity. From these selected recordings, 22 ECG-derived and sleep quality features were extracted and subsequently refined through recursive feature elimination (RFE) to mitigate redundancy and enhance predictive salience. We evaluated three regression models—Ridge Regression, Random Forest, and Gradient Boosting—employing subject-based 5-fold cross-validation to foster generalizability across individuals. For sleep efficiency, Ridge Regression attained a mean R² of 0.8734, indicating a high degree of explained variance; by comparison, Random Forest registered an R² of 0.2756 for AHI, which underscores the formidable obstacles in modeling sporadic apnea episodes amid constrained empirical resources. Feature importance scrutiny further illuminated wake hours and deep sleep ratio as preeminent correlates for sleep efficiency, complemented by deep sleep ratio and QRS amplitude for AHI. Collectively, this framework lays a promising foundation for non-invasive, individualized sleep monitoring, offering reliable estimates of sleep efficiency and preliminary insights into apnea patterns, albeit within the constraints of a modest sample size.
Papers List
List of archived papers
ساخت ومشخصه یابی هیدروژل بر پایه ژلاتین/صمغ عربی حاوی مقادیر مختلف آگارز به منظور کاربرد در ترمیم زخم
زهرا قاسمی - مهشید خرازیها
بررسی عوامل موثر بر بهبود مالیات ستانی از اقتصاد دیجیتال در کشور (مورد مطالعه سازمان امور مالیاتی استان تهران)
نسار احمدی - ملک تاج ملکی اسکوئی
کاربردهای الگوریتم فراابتکاری ماهی پاککننده در اینترنت اشیا
زهرا ترتیبیان - علی اکبر نقابی
مطالعه کامپوزیتهای سرامیکی هیدروکسیآپاتیت جهت استفاده در کاشتنیهای استخوانی
میلاد بدر - مهدیه سلطانعلیپور - جعفر خلیلعلافی
Optimization of the Mechanical Properties of PVA/Gelatin Hydrogel Reinforced with Polycaprolactone Nanofibers Using the Finite Element Method
Mohadeseh Nazouri - Iman Zoljanahi Oskui - Hadi Taghizadeh
Lightweight 3D U-Net for Robust Liver Segmentation in Multi-Institutional CT Datasets
Seyyed Mohammad Hosseini - Faeze Salahshour - Ahmadreza Sebzari - Masoomeh Safaei - Hossein Ghadiri Harvani
Enhancing Audit Quality through Artificial Intelligence
Ebrahim Navidi Abbasspoor - Elnaz Maleki
یک مدل برنامهریزی پویا برای استقرار زنجیرههای تابعی سرویس در محاسبات ابری ابر تاریک
حامد منکرسی - غلامرضا احمدی
بازاریابی محتوایی هوشمند: بازآفرینی تعامل کاربران و برندها با کمک هوش مصنوعی در رسانههای اجتماعی
پریسا جعفری - سیروس فخیمی آذر - سلیمان ایرانزاده - حسین بوداقی خواجه نوبر
Phase-Amplitude Coupling Reflects Functional Cortical Engagement During Dynamic and Static Motor Tasks
Seyed Saman Sajadi - Ahmad Reza Keihani - Fateme Karbasi - Mohammad Amin Fathollahi - Shahriar Nafissi - Erfan Azizi - Amir Homayoun Jafari
more
Samin Hamayesh - Version 42.5.2