0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Predicting Sleep Efficiency and Apnea Index Using ECG-Derived and Sleep Quality Features: A Machine Learning Approach
Authors :
Mahla Khodaverdi
1
Raheleh Davoodi
2
1- دانشگاه شهید بهشتی تهران
2- دانشگاه شهید بهشتی تهران
Keywords :
Sleep efficiency،Apnea index،ECG،Machine learning،Feature selection
Abstract :
Sleep quality and obstructive sleep apnea profoundly influence cardiovascular function, cognition, and overall well-being, yet conventional monitoring approaches remain largely invasive or cumbersome, underscoring the imperative for streamlined, non-invasive alternatives. Herein, we present a machine learning framework that synergistically integrates electrocardiogram (ECG)-derived features with sleep quality metrics to forecast sleep efficiency and apnea-hypopnea index (AHI). Drawing upon the ECSMP (A Dataset on Emotion, Cognition, Sleep, and Multi-Modal Physiological Signals) dataset—encompassing recordings from 89 healthy participants—we curated a subset of 33 subjects whose data exhibited complete and unimpaired capture across all ECG-sleep modalities, thereby ensuring analytical fidelity; incomplete records from the remaining participants, attributable to recording artifacts or procedural inconsistencies, were judiciously excluded to uphold data integrity. From these selected recordings, 22 ECG-derived and sleep quality features were extracted and subsequently refined through recursive feature elimination (RFE) to mitigate redundancy and enhance predictive salience. We evaluated three regression models—Ridge Regression, Random Forest, and Gradient Boosting—employing subject-based 5-fold cross-validation to foster generalizability across individuals. For sleep efficiency, Ridge Regression attained a mean R² of 0.8734, indicating a high degree of explained variance; by comparison, Random Forest registered an R² of 0.2756 for AHI, which underscores the formidable obstacles in modeling sporadic apnea episodes amid constrained empirical resources. Feature importance scrutiny further illuminated wake hours and deep sleep ratio as preeminent correlates for sleep efficiency, complemented by deep sleep ratio and QRS amplitude for AHI. Collectively, this framework lays a promising foundation for non-invasive, individualized sleep monitoring, offering reliable estimates of sleep efficiency and preliminary insights into apnea patterns, albeit within the constraints of a modest sample size.
Papers List
List of archived papers
رویکردهای مبتنی بر هوش مصنوعی برای تشخیص تقلب مالی
مهدیه نامی بسیط - شبنم بالازاده قره باغی - مهدی نامی بسیط
Biomechanical Contrast Between Native and Decellularized Triple-Negative Breast Tumors in Mice
Mohammad Javad Farjam - Saman Asadi - Ashkan Azimzadeh - Saeid Amanpour - AbdolMohammad Kajbafzadeh - Mohammad Ali Nazari
تاثیر تمرین با تردمیل آبی بر کینماتیک پرش- فرود فوتسالیست های حرفه ای
صفورا قاسمی - مسعود گلپایگانی - امیرحسین نجیمی
پژوهشی در حسابداری و هوش مصنوعی با استفاده از مدلسازی موضوعی
زین العابدین پاشایی باروجی - حسین راستکار رضائی - علیرضا عظیمی ثانی
طراحی مدل توزیع ناب - کلاس جهانی در صنعت برق ایران
رکسانا رادمنشی
Advanced Computational Intelligence for Financial Market Forecasting and Decision-Making: A Synthesis of Deep Learning and Machine Learning Approaches
Mahdi Rastkar Mirzaei - Ramin Saman Azari
کلیات قوانین و مقررات مرتبط با هوش مصنوعی
مجید حسن نژاد - مهدی خلفی
شناسایی رابطه غیرخطی بین قدرت سیگنال و مصرف باتری در کنتورهای هوشمند آب با استفاده از XGBoost
محمد رستمی - فضل الله ادیب نیا
Neural Encoding of Outcome Magnitude: Evidence from fMRI
Amin Mohammad Mohammadi - Shaghayegh Mahmoudi - Narjes Amin - Farid Hosseinzadeh - Elias Ebrahimzadeh - Hamid Soltanian-Zadeh
چارچوب احراز هویت مبتنی بر بلاکچین برای حفظ حریم خصوصی کاربران در شبکههای مخابراتی
رضا دانش
more
Samin Hamayesh - Version 42.4.6