0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Lightweight 3D U-Net for Robust Liver Segmentation in Multi-Institutional CT Datasets
Authors :
Seyyed Mohammad Hosseini
1
Faeze Salahshour
2
Ahmadreza Sebzari
3
Masoomeh Safaei
4
Hossein Ghadiri Harvani
5
1- دانشگاه علوم پزشکی تهران
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی بیرجند
4- دانشگاه علوم پزشکی تهران
5- دانشگاه علوم پزشکی تهران
Keywords :
Liver،Segmentation،Computed Tomography (CT)،3D U-Net
Abstract :
A computed tomography (CT) image of the liver and surrounding structures provides detailed cross-sectional images, which highlight anatomical variations and pathological conditions. The combination of CT and U-Net networks is a well-known method for liver segmentation, which is vital for accurate diagnosis, treatment planning, and surgical intervention. However, the high computational demands of recent 3D U-Net–based architectures prevent their deployment in resource-constrained environments. A lightweight 3D U-Net optimized for liver segmentation is proposed in this study, maintaining high performance while reducing computational complexity drastically. Several institutional datasets of 250 abdominal CT volumes were compiled from public benchmarks (LiTS, IRCAD) and local clinical sources, encompassing anatomical, pathological, and protocol variations. An isotropic resampling procedure was used to resample, normalize intensity, standardize crops, and augment data on-the-fly. With fewer than two million parameters, the proposed model retains the encoder-decoder and skip-connection designs of conventional 3D U-Nets. An evaluation of a 30% independent set of tests achieved Dice similarity coefficients of 0.85 ± 0.02, intersect-over-unions of 0.82 ± 0.03, inference times under 0.7 s and GPU memory consumption below 2 GB. The performance was consistent across public and local datasets, highlighting the importance of heterogeneous training data. Even though the proposed model is slightly less accurate than heavy architecture, it delivers near-real-time segmentation with minimal resource consumption, so it can be integrated into clinical workflows, especially in environments where computational resources are limited.
Papers List
List of archived papers
Gravity-Directed Growth of ZnO Nanorods: Morphological Control via Chemical Bath Deposition
Masoud Ghashami - Melisa Daryayi - Mohammad Abdolahad
پیشنهاد درمان شخصیسازیشده برای بیماران OCD با یادگیری تقویتی
سمیه حسینی زنوزی
Design and Evaluation of a Low-Cost Dry Electrode for Physiological Signal Acquisition
Sobhan Sheykhivand - Nastaran Khaleghi - Maryam Khoshkhabar
Design and Development of A Focal Vibrating Massager with Wide Frequency Range and Real-Time Control
Ali Bakhshian Talkhoncheh - Mohammad Yousefi - Saeid Niknami - Borhan Beigzadeh
بهبود تشخیص تومور مغزی با استفاده از ترکیب شبکه های عمیق به روش رای اکثریت
مریم صباغ کاخکی - عقیله حیدری
بررسی تاثیر حسابداری منابع انسانی بر عملکرد رقابتی استراتژیک شرکتهای کوچک و متوسط استان گیلان
ائلناز سیادتی
شناسایی نقش تحولآفرین هوش مصنوعی بر خودکارسازی فرآیندهای حسابداری و سادهسازی گزارشهای مالی
صدیقه بخشی زاده باغستانی
کاربردها، تکنیکها، چالشها و ملاحظات اخلاقی و اجتماعی در سیستمهای پیشنهاددهنده
کیانا رحیمی - سمانه شیبانی
Towards Accurate Multimodal Defformable Image Registration via Image Translation and Weak Supervision
Maryam Nasr - Mohammadreza Yazdchi - Mohsen Safdari
Late Fusion-Based Deep Learning for Breast Cancer Classification in Mammography
Mehdi Baharloo - Ata Jodeiri
more
Samin Hamayesh - Version 42.4.6