0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Lightweight 3D U-Net for Robust Liver Segmentation in Multi-Institutional CT Datasets
Authors :
Seyyed Mohammad Hosseini
1
Faeze Salahshour
2
Ahmadreza Sebzari
3
Masoomeh Safaei
4
Hossein Ghadiri Harvani
5
1- دانشگاه علوم پزشکی تهران
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی بیرجند
4- دانشگاه علوم پزشکی تهران
5- دانشگاه علوم پزشکی تهران
Keywords :
Liver،Segmentation،Computed Tomography (CT)،3D U-Net
Abstract :
A computed tomography (CT) image of the liver and surrounding structures provides detailed cross-sectional images, which highlight anatomical variations and pathological conditions. The combination of CT and U-Net networks is a well-known method for liver segmentation, which is vital for accurate diagnosis, treatment planning, and surgical intervention. However, the high computational demands of recent 3D U-Net–based architectures prevent their deployment in resource-constrained environments. A lightweight 3D U-Net optimized for liver segmentation is proposed in this study, maintaining high performance while reducing computational complexity drastically. Several institutional datasets of 250 abdominal CT volumes were compiled from public benchmarks (LiTS, IRCAD) and local clinical sources, encompassing anatomical, pathological, and protocol variations. An isotropic resampling procedure was used to resample, normalize intensity, standardize crops, and augment data on-the-fly. With fewer than two million parameters, the proposed model retains the encoder-decoder and skip-connection designs of conventional 3D U-Nets. An evaluation of a 30% independent set of tests achieved Dice similarity coefficients of 0.85 ± 0.02, intersect-over-unions of 0.82 ± 0.03, inference times under 0.7 s and GPU memory consumption below 2 GB. The performance was consistent across public and local datasets, highlighting the importance of heterogeneous training data. Even though the proposed model is slightly less accurate than heavy architecture, it delivers near-real-time segmentation with minimal resource consumption, so it can be integrated into clinical workflows, especially in environments where computational resources are limited.
Papers List
List of archived papers
Parkinson’s Disease Classification Using EEG and a Hybrid EEGNet–LSTM Architecture
Pouya Taghipour Langrodi - Amirsadra Khodadadi - Ali Sadat Modaresi - Mohammad Ahadzadeh - Mostafa Rostami - Sadegh Madadi
Addressing Class Imbalance Using Difficulty-based Oversampling with Variance Control
Zahra Asgharzadeh Bonab - Sina Shamekhi
A Real-Time Integrated Framework for Face Detection, Gender, and Emotion Recognition Using Convolutional Neural Networks
Mostafa Asgarinejad - Elias Ebrahimzadeh - Vida Mirabolfathi - Lila Rajabion - Hamid Soltanian-Zadeh
مقایسه روشهای مختلف دوخت تاندون فلکسور دست با استفاده از آنالیز اجزای محدود
امیررضا کاظمی - محمد جعفری - محمد مهدی جلیلی - سید حسین سعید بنادکی
Investigating the effect of alpha/theta neurofeedback on Emotional Intelligence
Saeed Yarmohammadi - Amirreza Ahmadi
بررسی نقش روحیه مودیان مالیاتی بر اساس تیپهای شخصیتی در قصد فرار مالیاتی
سحر بخشی - مهدی ذوالفقاری - کیهان آزادی هیر
کاربرد هوش مصنوعی در بهینه سازی تولید و کاهش هدر رفت منابع
مریم مژده
Photoresponsive Zwitterionic Block Copolymer Nanoparticles Prepared by a One-Step Nanoprecipitation–Photocrosslinking Strategy for Precision Cancer Chemotherapy
Helia Heydarinasab - Vahid Haddadi Asl - Mahdi Tohidian - Hanie Ahmadi
واقعاً چه چیزی در جلوگیری از تقلب علیه سازمان ها مؤثر است که تصمیم گیرندگان باید بدانند؟
شبنم بالازاده قره باغی - سعید مصدق - اسماعیل عبادی
نقش حاکمیت شرکتی و شهرت در افشا مسولیت اجتماعی شرکت و عملکرد شرکت
رسول عبدی - سعید فردوسی
more
Samin Hamayesh - Version 42.5.2