0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Comparative Assessment of U-Net and Pix2Pix for Applying Direct Attenuation Correction in the Image Domain in 68Ga-PSMA PET/CT Imaging
Authors :
Negin Hamidiyan
1
Hadi Taleshi Ahangari
2
Pardis Ghafarian
3
Hossein Arabi
4
Mohammad Reza Ay
5
1- دانشگاه علوم پزشکی سمنان
2- دانشگاه علوم پزشکی سمنان
3- دانشگاه علوم پزشکی شهید بهشتی
4- Geneva University Hospital
5- دانشگاه علوم پزشکی تهران
Keywords :
Attenuation Correction،PET/CT،PSMA،Deep Learning،U-Net،Pix2Pix
Abstract :
Attenuation correction (AC) is crucial for achieving accurate quantitative positron emission tomography (PET) imaging; however, it remains a challenge in dedicated PET systems that lack simultaneous computed tomography (CT) imaging. In recent years, deep learning (DL) approaches have been explored for this purpose, though direct comparisons between models are still limited. In this study, we directly compared the performance of two widely applied DL architectures, U-Net and Pix2Pix, for direct AC of whole-body 68Ga-PSMA PET images using the same set of 95 patient data sets. For each data set, CT-based attenuation-corrected PET (PET-CTAC) was used as the reference. Quantitative evaluation included mean error (ME) of mean of standardized uptake value (SUVmean), normalized root mean square error (NRMSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Both U-Net and Pix2Pix generated PET images of comparable quality to those from PET-CTAC, but Pix2Pix generally showed better quantitative metrics. Specifically, U-Net achieved ME, NRMSE, SSIM, and PSNR values of 0.037 ± 0.02, 0.006 ± 0.005, 12.88 ± 2.73, and 0.98 ± 0.14, respectively, whereas Pix2Pix achieved 0.015 ± 0.015, 0.005 ± 0.004, 13.93 ± 2.48, and 0.99 ± 0.004. Statistical analysis, using paired t-tests or Wilcoxon signed-rank tests depending on data normality, demonstrated that Pix2Pix produced SUV estimates closer to those of PET-CTAC, with lower bias and variability than U-Net. In conclusion, both DL models enabled direct AC of whole-body 68Ga-PSMA PET, but Pix2Pix provided more accurate and reliable AC when the two models were directly compared, indicating Pix2Pix is the stronger candidate for clinical use in dedicated PET systems without CT imaging.
Papers List
List of archived papers
ارائه الگوی حسابداری منابع انسانی در شرکتهای دانش بنیان با رویکرد داده بنیاد
حسین بوداقی خواجهءنوبر - فخرالدین محمدرضایی - بهارک یادگار جمشیدی
تاثیر تعدیل کننده شدت رقابت پذیری بازار محصولات و نبود تقارن در اطلاعات بر ارتباط مابین هزینه های سرمایه ای و ارزشگذاری شرکت
سینا سلیمانی - فاطمه صمدی
شیوه های حسابداری مدیریت استراتژیک: بررسی ادبیات و فرصتی برای تحقیقات آینده
رعنا شهداور - موسی ابراهیم زاده - فاطمه خانی پور
چالشها و تهدیدهای امنیتی رایانش ابری در تحلیل دادههای کلان
حمداله مهرآیین
مروری جامع بر کاربردهای هوش مصنوعی توضیح پذیر
زهرا تقی پور - پرویز قربانزاده - سمیرا کرامت طلاتپه - آذر ملازاده ایگدیر
Excessive and Variable Center of Mass Motion Characterizes Gait Instability In Women with Obese Knee Osteoarthritis
Diba Chegini - Behzad Yasrebi - Siamak Haghipour - Farhad Farhad Tabatabai Ghomsheh - Aliakbar Pahlevanian
Preparation of pH sensitive Carboxymethyl cellulose / Polyvinylpyrrolidone based hydrogels for drug delivery applications
Masoumeh Olad Mazraeh - Hanieh Shokrkar - Nilufar Nasirpur
Recent Advances and Open Challenges in Explainable AI for Deep Learning-based Recommender Systems
Narjes Badpar - Azita Shirazipour - Seyed Javad Mirabedini
From Handcrafted to Deep Representations: ReliefF and DANN Feature Fusion for EEG Emotion Classification
Zahra Mahdinezhad - Raheleh Davoodi
چالش ها و راهکارهای استفاده از حسابداری منابع انسانی در عصر دیجیتال
پگاه نکواصل - حانیه سرافراز
more
Samin Hamayesh - Version 42.5.2