0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Multiclass ICU Length-of-Stay Prediction Using Tree-Based Machine Learning Techniques
Authors :
Mahyar Mohammadian
1
Somayeh Afrasiabi
2
1- School of Electrical and Computer Engineering, Shiraz University
2- School of Electrical and Computer Engineering, Shiraz University
Keywords :
multi-class prediction،ICU length of stay،CatBoost،MIMIC III،Area Under Curve
Abstract :
Accurate prediction of intensive care unit (ICU) length-of-stay (LOS) is essential for patient management and resource planning. This study compares four tree-based machine learning models—Random Forest, XGBoost, LightGBM, and CatBoost—for multiclass LOS prediction using the MIMIC-III database. A total of 42,306 ICU stays were processed with 17 physiologic variables and discretized into 10 ordered LOS classes. Models were evaluated using quadratic-weighted Cohen’s kappa (κ) and Mean Absolute Deviation (MAD) to capture ordinal agreement and temporal accuracy. CatBoost achieved the best performance (κ = 0.444, MAD = 124.66 hours), effectively predicting both short- and longstay patients, which are operationally critical. XGBoost and Random Forest provided intermediate results, while LightGBM showed lower temporal precision (MAD = 164.19 hours). The results demonstrate that CatBoost’s ordered boosting strategy and native handling of categorical variables enable robust, interpretable predictions suitable for clinical and operational decision-making. These findings highlight the potential of tree-based machine learning to transform ICU LOS prediction from a retrospective metric into a proactive, reliable and interpretable tool for optimizing patient flow, resource allocation and decision-making. The study provides a foundation for future improvements using richer time-series data, multimodal inputs, and multicenter validation.
Papers List
List of archived papers
The role of data analysis and financial engineering in managing industrial projects with a circular economy approach
Mohammad Reza Taheri Oshtobin - Seyed Ali Ghamiloei
Static and Dynamic WPLI on Stressful Scenarios: an EEG Study
Nasrin Dehghani - Negin Joghataei - Zahra Ghanbari - Mohammad Hassan Moradi
نقش حسابداری مدیریت استراتژیک در تصمیمگیری استراتژیک
محمدرضا مهربان پور - جواد محمدی مهر
Parametric study on the separation of extracellular vesicles in a sheathless spiral microfluidic device
Mohammad Mahdi Abdi - Seyedeh Sarah Salehi
Goniometry and Electromyography Data Analysis for Knee Health Diagnosis using Machine Learning
Mohammad-Reza Sayyed Noorani - Zahra Mahmoudi Anzabi - Sara Sharifi
مروری بر کاربردهای هوش مصنوعی درصنعت
امیرپاشا گرگان نژاد - لاریسا خدادادی
تاثیر قابلیت های فناوری اطلاعات بر کیفیت حسابرسی با نقش میانجی پذیرش هوش مصنوعی
حسین نیک آسا - حیدر محمدزاده سالطه
تحلیل بیومکانیکی تعادل ایستایی در جوانان و سالمندان بر روی سطوح پایدار و ناپایدار با استفاده از شاخصهای سینتیکی نیروی واکنشی زمین
فرشته موسوی کنک لو - علیرضا هاشمی اسکویی - شقایق حسن زاده خانمیری
بازاندیشی در تحول آموزش و توسعه مهارت در عصر هوش مصنوعی؛ مروری تحلیلی بر تجربه آموزش نوین در ایران
خدیجه سلیمیان ریزی - حسین کاظمی
Phase-Specific Analysis of Arm–Leg Load Sharing in Exoskeleton-Assisted Gait Using Biomechanical Indices
Milad Hosseini - Negin Nasirian - Saeed Behzadipour
more
Samin Hamayesh - Version 42.5.2