0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Multiclass ICU Length-of-Stay Prediction Using Tree-Based Machine Learning Techniques
Authors :
Mahyar Mohammadian
1
Somayeh Afrasiabi
2
1- School of Electrical and Computer Engineering, Shiraz University
2- School of Electrical and Computer Engineering, Shiraz University
Keywords :
multi-class prediction،ICU length of stay،CatBoost،MIMIC III،Area Under Curve
Abstract :
Accurate prediction of intensive care unit (ICU) length-of-stay (LOS) is essential for patient management and resource planning. This study compares four tree-based machine learning models—Random Forest, XGBoost, LightGBM, and CatBoost—for multiclass LOS prediction using the MIMIC-III database. A total of 42,306 ICU stays were processed with 17 physiologic variables and discretized into 10 ordered LOS classes. Models were evaluated using quadratic-weighted Cohen’s kappa (κ) and Mean Absolute Deviation (MAD) to capture ordinal agreement and temporal accuracy. CatBoost achieved the best performance (κ = 0.444, MAD = 124.66 hours), effectively predicting both short- and longstay patients, which are operationally critical. XGBoost and Random Forest provided intermediate results, while LightGBM showed lower temporal precision (MAD = 164.19 hours). The results demonstrate that CatBoost’s ordered boosting strategy and native handling of categorical variables enable robust, interpretable predictions suitable for clinical and operational decision-making. These findings highlight the potential of tree-based machine learning to transform ICU LOS prediction from a retrospective metric into a proactive, reliable and interpretable tool for optimizing patient flow, resource allocation and decision-making. The study provides a foundation for future improvements using richer time-series data, multimodal inputs, and multicenter validation.
Papers List
List of archived papers
تاثیر تعدیل کننده شدت رقابت پذیری بازار محصولات و نبود تقارن در اطلاعات بر ارتباط مابین هزینه های سرمایه ای و ارزشگذاری شرکت
سینا سلیمانی - فاطمه صمدی
بررسی تأثیر ریسک اطلاعات مالی و بندهای تعدیلی حسابرسی بر وجوه هیئتمدیره مشترک در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
حمیدرضا عزیزی - عرفان تخستین حلم
بررسی تأثیر مسئولیت اجتماعی شرکت بر مفاهیم حسابداری مالی (بازده سهام، مدیریت سود واقعی، عدم تقارن اطلاعات و عملکرد مالی) در شرکت پذیرفته شده در بورس اوراق بهادار
فاطمه ایمانی - محمود همت فر
توسعه پوشش چند جزئی بر پایه لیگنین و نانوذرات اکسید سریم بر سطح آلیاژ AZ91 برای استفاده در ایمپلنتهای فلزی
هستی عزیزی لمجیری - زهرا قاسمی - مهشید خرازیها
Analysis of Blood Report Images Using General-Purpose Vision-Language Models
Nadia Bakhsheshi - Hamid Beigy
پیش بینی پیک بار تهران به کمک الگورتیم های یادگیری ماشین ترکیبی
مسعود ابراهیمی کاشف - حسین اقبالی - محمدعلی اقبالی
تاثیر ابزارهای هوش مصنوعی بر عملیات حسابداری و حسابرسی در ایران با در نظر گرفتن نقش تعدیلگری حاکمیت فناوری اطلاعات
میلاد تابع اصفهانی - زهره زیودار
تأثیرات دیجیتالسازی بر مدلهای کسبوکار و استراتژیهای بازار.
سجاد یوسفی - مریم پورنجف - سیده محدثه موسوی - نازنین حسنوند
مدل یادگیری ماشین برای امنیت سایبری شهر هوشمند
علیرضا فولاد - محمد امین مقدادی - علی عبدلی - شایان مسگر
Finite Element Modeling of Bare-Tip and Cylindrical Diffusing Optical Fibers for Prostate Cancer Focal Laser Ablation
Sajjad Saadati Rad - Alireza Mehridehnavi - Seyed Mojtaba Karbalaee
more
Samin Hamayesh - Version 42.4.6