0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Hierarchical Task-Structured GNN Meta-Learning for Few-Shot EEG Motor Imagery Decoding
Authors :
Mohammad Armin Dehghan
1
Mohammad Mohammadianbisheh
2
Mohammad Bagher Shamsollahi
3
1- دانشگاه صنعتی شریف، تهران، ایران
2- دانشگاه صنعتی شریف، تهران، ایران
3- دانشگاه صنعتی شریف، تهران، ایران
Keywords :
EEG Signals،BCI Decoding،Meta-learning،Graph Neural Networks (GNNs)،Subject-level Adaptation،Hierarchical Task Structures
Abstract :
Motor imagery classification from electroencephalo- gram (EEG) signals is a core challenge in brain–computer in- terface (BCI) systems. Yet, strong inter-subject variability, where each subject follows a distinct distribution, renders conventional learning approaches poorly suited for generalization to unseen subjects. Few-shot meta-learning offers a promising alternative by enabling rapid adaptation to new subjects with only limited labeled data. At the same time, neuroscience evidence emphasizes that EEG decoding should leverage network-level interactions rather than treating electrodes as independent sources, moti- vating graph-based representations. In this work, to leverage network-level structure, We propose a principled graph construc- tion pipeline to represent EEG data. Also to enable subject- level adaptation in few-shot settings, we use a meta-learning framework that learns Hierarchical Task Structures, through which we exploit inter-subject correlations, and employ GNN architectures as the learner. Experiments on the PhysioNet motor imagery dataset show that our method achieves over 10% higher accuracy than baseline models, while reducing variance across subjects by roughly 10%. This demonstrates that combining graph-based representations with few-shot meta-learning yields more reliable and subject-adaptive BCI systems.
Papers List
List of archived papers
Evaluating and Comparing Artificial Intelligence Tools in Solving Mathematical Problems
Marziyeh Felahat - Hossein Gholamalinejad
The Impact of an Interactive Rehabilitation Protocol on Reorganization of Brain Networks in Children with Cerebral Palsy: A Pilot Study
Shahed Salehzehi - Mahdi Mollaei - Parisa Hosseini - Ali Koohian Mohammad abadi - Mohammad Ebrahim Hashemi - Hamid Reza Kobravi - Narges Hashemi - Mehran Beiraghi Toosi - Javad Akhondian
چالشهای اخلاقی استفاده از هوش مصنوعی در پیشبینی رفتار مصرفکننده: مطالعه موردی در تجارت الکترونیکی
علی نادرزاده ینگجه
Dynamics modeling of cardiac electromechanical intervals and hysteresis analysis
Sina Asadi - Mohammad Bagher Shamsollahi
تشخیص بیماری MS با استفاده از EfficientNet-B0 و CycleGAN بر پایه نقشههای ضخامت شبکیه
محبوبه سبزه یان - مریم سبزه یان - ماندانا سادات غفوریان - امین نوری
تاثیر قابلیت های فناوری اطلاعات بر کیفیت حسابرسی با نقش میانجی پذیرش هوش مصنوعی
حسین نیک آسا - حیدر محمدزاده سالطه
Optimization Dynamic Stability and Energy Efficiency in Human-Like Bipedal Robot Over a Full Gait Cycle
Mahdi Sadeghi - Mostafa Rostami - Soroush Sadeghnejad
Experimental and Theoretical Analysis of the Mechanical Performance of 3D-Printed Biomedical Splints Made of PLA/CF with Structural Geometric Variations
ELNAZ ABEDINI - Nima Feizlou
تاثیر اشتراک گذاری دانش در رسانه های اجتماعی بر توسعه کسب و کارهای کوچک و متوسط تولیدات نوآورانه
حسین الف نژاد - حسین بوداقی خواجه نوبر
بکارگیری فن آفرینی های پیشرفته جهت شناسایی خانه های خالی با اهداف مالیات گیری
جابر خورشیدسوار - جمال برزگری خانقاه
more
Samin Hamayesh - Version 42.5.2