0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Robust Binary Differentiation of ALL vs. AML Using Deep Graph Convolutions
Authors :
Mahsan Rahmani
1
Saeed Meshgini
2
Reza Afrouzian
3
1- Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran Rahmani@tabrizu.ac.ir
2- Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
3- Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
Keywords :
Acute leukemia.،ALL;،AML;،graph convolutional networks;،microscopic smear analysis;،robust classification
Abstract :
Early triage of acute leukemia remains challenging due to subtle morphologic differences between lymphoid and myeloid blasts and the time-consuming nature of manual review. We present an end-to-end pipeline that integrates graph construction with a tailored deep convolutional architecture for automatic differentiation between acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The dataset comprises smear images collected from 44 patients; images are resized and normalized, class imbalance is mitigated via GAN-based augmentation, and superpixel-level regions are used to build an adjacency graph whose node features summarize local intensities. A six-layer graph convolutional backbone with batch normalization, dropout, and a terminal softmax performs binary classification. Under a 70/20/10 split with 5-fold cross-validation, the model achieves strong and consistent performance (Accuracy 99.4%, Specificity 97.3%, Kappa 0.85), and remains robust when synthetic white noise is added (accuracy >90% at SNR = 0 dB). Comparative analyses against standard CNN/ResNet/VGG baselines indicate superior accuracy and stability, supporting the efficiency of graph- enhanced representations for this task. These results suggest a practical tool to support pathologists in rapid screening and referral. Future work will extend the framework to multi-class settings (including CML/CLL) and explore alternative augmentation strategies beyond GANs.
Papers List
List of archived papers
Functionally Graded Material Vertebroplasty Screws: A Finite Element Biomechanical Study
Maryam Rahimi - Mohammad Hosein Zadeh-Posti - َAisan Rafiei - Nima Jamshidi
استفاده از هوش مصنوعی جهت تولید یک مقاله تحقیقاتی حسابداری: بررسی پیامدها
رعنا شهدآور - حسین قشلاق سفلائی - حسین عبداله زاده خانقاه
بکارگیری یک استراتژی دیجیتال برای نوآوری های اجتماعی و تجاری
محمد رستمی - سمیه فرهادی
Dynamic Cross-Frequency Coupling Reveals Task Dependent Neural Engagement During Varying Cognitive Demands
Seyed Saman Sajadi - Babak Fazli - Fateme Karbasi - Ehsan Garosi - Milad Jalilian - Soheila Hosseinzadeh - Amir Homayoun Jafari - Seyed Abolfazl Zakerian
Integration of High-Speed AFM Nanomechanical Profiling with Deep Spatiotemporal Learning for Early Response Assessment and Tumor Stage Prediction in Oncolytic Virotherapy
َAlireza Haghighatjoo - Fatemeh Noori - Peyman Afshari Bijarbaneh - Seyed Amirhossein Mousavi
بررسی نقش حسابداری مدیریت در بهبود تصمیمگیری استراتژیک
علی اصغر نورمحمدی
Binary Discrete Emotion Detection with Peripheral and Fp1-Fp2 EEG Signals on PEEFS Dataset
Fatemeh Shalchizadeh - Sina Shamekhi - Mahdi Jafari Asl
قیمتگذاری پویا توسط هوش مصنوعی
رضا رستمی - مهدی فرساد غلامی - مهدی محمدی امین
بررسی تاثیر معیارهای قرارداد هوشمند بر عملکرد فناوری بلاکچین
محمد علیمحمدی - امیر نجفی
روش نرمافزاری برای پیشبینی انتشار آلاینده اکسید نیتروژن با استفاده از معماری شبکه عصبی کانولوشنی عمیق
فرناز حسینی
more
Samin Hamayesh - Version 42.5.2