0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Gait Retraining of Musculoskeletal Patients Using Deep Learning Techniques
Authors :
Kourosh Alimadadi
1
Masoud Shariat Panahi
2
Morad Karimpour
3
Hadi Ghattan Kashani
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
Keywords :
Skeletal abnormalities،Gait retraining،Depth image processing،Deep learning
Abstract :
Reconstructive surgeries and the use of bone and joint prostheses are among the most common treatments for lower-limb skeletal disorders. Patients undergoing such treatments often face challenges in regaining a proper gait pattern. To overcome these difficulties, they are typically required to participate in rehabilitation programs where correct walking strategies are taught by instructors. However, these programs demand specialized equipment and experienced trainers, which are both costly and time-consuming, and not easily accessible to all patients. In this paper, we propose a novel method for gait extraction, analysis, and correction in musculoskeletal patients using depth-sensing camera (RGBD) and deep learning techniques. The three-dimensional coordinates of anatomical key points in the patient’s lower limbs are automatically extracted from gait videos, and the corresponding motion patterns are represented through spatial variation graphs of these key points. Subsequently, inverse kinematics analysis of the motion pattern is performed to derive variations in anatomical indicators (distances and angles) across the main gait phases, including Toe-off, Mid-Stance, Mid Swing, and Heel-Strike. By comparing these indicators with those of healthy individuals, the system evaluates the extent and nature of gait deviations that require correction. Finally, the proposed framework provides recommendations for adjusting the patient’s gait and aligning it more closely with healthy walking patterns. Results from multiple case studies demonstrate that the proposed approach can significantly improve gait performance in the post-surgery phase and substantially reduce musculoskeletal complications caused by improper walking.
Papers List
List of archived papers
Multi-Objective Optimization of the Impeller of a mini Blood Pump: Balancing Outlet Pressure and Scalar Shear Stress
Reza Sahebi-Kuzeh kanan - Hanieh Niroomand-oscuii - Habib Badri Ghavifekr - Farzan Ghalichi
مروری بر روش های هوش مصنوعی توضیح پذیر
الهه محمدی - آزاده سلطانی
تاثیر مسئولیت اجتماعی شرکت ها بر شهرت برند و ارزش ویژه برند (نمونه موردی گالری چرم امینی)
لیلا امینی راد
Inverse Dynamics Analysis of the Crutch-Assisted Gait with a Lower-Limb Robotic Exoskeleton
Negin Nasirian - Milad Hosseini - Reza Norouzzadeh - Saeed Behzadipour
Performance Evaluation of Supervised Machine Learning Algorithms for Customer Classification in E-Commerce
Somayeh Ebrahimi Emamchai
GelMA Synthesis and Experimental Challenges
Mohammad Matin Shirzad - Zahra Mohammadi - Shaghayegh Kohzadi
بررسی کاربرد و چالش های هوش مصنوعی در مدیریت لجستیک بنادر
ایمان حق شناس - دامون رزمجویی
Continuous non-invasive blood pressure estimation based on impedance plethysmography measurements
Fatemeh Shokri - Masoomeh Ashoorirad - Rasool Baghbani
چالش های تحول دیجیتال و هوش مصنوعی در صنعت با رویکرد توسعه پایدار
رضا صبوری - ناصر فقهی فرهمند - سلیمان ایران زاده
EJES: A Diverse Estimator Bank Framework for High-Resolution EEG/MEG Source Localization
Reza Khajehsarvi - Sayed Mahmoud Sakhaei - Sadegh Jamshidpour
more
Samin Hamayesh - Version 42.5.2