0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Improving Effectivity of repetitive Transcranial Magnetic Stimulation in Treatment of Amyotrophic Lateral Sclerosis by Designing New Protocol and Using Machine Learning
Authors :
Ali Abedi
1
Gholamreza Moradi
2
Reza Sarraf Shirazi
3
Mehran Jahed
4
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
4- دانشگاه صنعتی شریف، تهران، ایران
Keywords :
repetitive Transcranial Magnetic Stimulation (rTMS)،Machine Learning،Support Vector Machine (SVM)،Amyotrophic Lateral Sclerosis (ALS)،Electroencephalography (EEG)
Abstract :
Repetitive transcranial magnetic stimulation (rTMS) is an effective and old technique of neuromodulation of neuropsychiatric diseases, however patient responses are variable. Finding effective biomarkers that can predict the response to treatment is a critical step in maximizing the therapeutic efficacy. EEG-based features, when integrated with machine learning, provide a promising strategy to the analyze of response. In this work, we explore the effectiveness of EEG-derived features in identifying rTMS responders and non-responders by means of a Support Vector Machine (SVM) model. This study involved 34 ALS patients recruited from a neurology clinic, divided into two groups: 18 received the new rTMS protocol (NP) and 16 followed the Old protocol (OP). Resting-state EEG was acquired in patients before rTMS. Extracted features by using signal processing methods were: time domain (mean amplitude, variance), frequency domain (band power, peak alpha frequency), nonlinear tests (Hjorth parameters, fractal dimension, Hurst exponent). These features were input into SVM classifier. classification performance of SVM model is high, with overall accuracy of 97.3% when using BP combined with ZCR and FD. The ROC curve, showed excellent discrimination between responders and non-responders, with an AUC of 0.99, indicating the stability of the selected features for predicting treatment response. High classification accuracy suggests that machine learning-based EEG analysis might be promising to provide a personalized guideline for rTMS new therapy protocol.
Papers List
List of archived papers
بررسی تاثیر سرمایه فکری بر رشد و ارزش شرکت با تاکید بر عملکرد مالی
یعقوب اقدم مزرعه - فائزه هاشم زاده اصل
مروری برسیاست های مالیاتی ارزهای دیجیتال : چالش ها و فرصت ها در دنیای اقتصاد نوین
نعمت رستمی مازویی - بهروز رادپور
کاربرد رویکرد بازیابی اطلاعات در تحلیل داده های بیماران دیابتی
زهرا محمدی فرد چینی بلاغ
نقش یادگیری عمیق در توسعه هوش مصنوعی و کاربردهای آن در صنعت، تجارت و زنجیره تأمین
آیدا مهرنیا
هوش مصنوعی در خودروهای خودران: چالشها و راهکارهای تصمیمگیری
مهدی مشایخی - محمد عادلی نیا - میلاد بهره مند
تاثیر هوش مصنوعی بر توسعه اقتصاد حسابداری
نیما قاسم زاده شهرک - سعید انورخطیبی - سلمان عبدی
Short-term gains vs. long-term Success: Reward strategy design for reinforcement learning in football
Mohammad Pashaei - Amirhossein Tayebi - Hadi Amiri - Ali Fahim
سیاستهای پولی، تغییرات نرخ ارز، تصمیمات تودهوار سهامداران در چارچوب الزامات قانونی بازار سرمایه
عظیم رضوی مجارشین
راهبرد تجاری و رفتار نامتقارن هزینهها با تاکید بر نقش توانایی مدیریتی شواهدی از شرکتهای پذیرفته شده بورس اوراق بهادار تهران و مسقط
علی انصاری - مهدی بشکوه
Edge AI for Real-Time UAV Data Processing
Mohammad Mahdi Salmani
more
Samin Hamayesh - Version 42.4.6