0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
The Influence of Insertion-Induced Prestress and Viscoelastic Properties in Fixational Stability of Pedicle Screws in UHWMPE block: A Finite Element Study
نویسندگان :
Ahmad Babazadeh Gh
1
Mohammadjavad (Matin) Einafshar
2
Ata Hashemi
3
1- Amirkabir University of Technology
2- Aalborg University, Denmark
3- Amirkabir University of Technology
کلمات کلیدی :
Finite element analysis،Natural frequency،Modal analysis،Pedicle screw،UHMWPE،Viscoelasticity،Prestress،Prony series
چکیده :
Pedicle screws are critical components in spinal fixation systems, and the stiffness of the screw-bone interaction plays a crucial role in implant success. There are various ways to investigate screw-bone bonding strength, one of which is vibration-based diagnosis of screw-bone structure. While finite element modeling can reduce the time and give the ability to model different geometries and other conditions, properly modeling the vibration behavior of the screw inside bone comes with difficulties. This study investigates the influence of insertion-induced prestress and the viscoelastic properties of ultra-high molecular weight polyethylene (UHMWPE) bone-analog material on the natural frequency of a pedicle screw–block assembly using finite element analysis (FEA). Three models were developed: Model I (linear elastic without prestress), Model II (linear elastic with prestress), and Model III (viscoelastic without prestress). A 3D geometry of the screw and UHMWPE block was constructed, and frequency analysis was performed at three insertion depths (10 mm, 20 mm, and 30 mm). Simulation results were compared with previously published experimental data. Model I underestimated the natural frequency at all depths around 14-30%, while Model II, accounting for screw insertion-induced radial prestress, improved prediction accuracy, reducing errors down to under 18%. Model III, which captured UHMWPE's viscoelastic behavior using a Prony series, showed the closest agreement with experimental data, with errors under 7%. The results highlight the importance of modeling both viscoelasticity and insertion-related prestress to accurately predict dynamic behavior. These findings are useful for improving finite element modeling of modal analysis methods to investigate screw stability in spinal implants.
لیست مقالات
لیست مقالات بایگانی شده
بررسی تاثیر هوش مصنوعی در معماری پارامتریک
دانیال جمشیدی فر
A Multi-Stage Ranking Pipeline for High-Precision Medical Information Retrieval
Asa Shabanian - Alireza Asl Nemati - Morteza Mohammadi Zanjireh
کاربرد هوش مصنوعی در بهینهسازی پردازش معاملات مالی: مدل های مفهومی و آیندهپژوهی
سجاد یوسفی - مریم پورنجف - لیلا حسین آبادی
حفظ حریم خصوصی دادهها در اینترنت اشیای پزشکی (IoMT) با استفاده از یادگیری فدرال (Federated Learning) در معماری مه
سالار لطفی آقجه - نازنین خاکسبز - نیلوفر رنجبر
مروری بر کاربرد الگوریتمهای یادگیری عمیق و یادگیری تقویتی در پیشبینی روند بازارهای مالی
سید محمد مشگ فروش - فرزانه کاویانی باغبادرانی
مدلسازی تصمیمگیری چندمعیاره در سیستمهای صنعتی با تأکید بر انتخاب ابزار هوشمند تحلیل داده
مهتاب شرافتی
مروری بر سیر تحول نظری برنامهریزی منطقهای مبتنی بر زنجیره ارزش با تاکید بر صنایع نساجی و پوشاک
محسن رفیعیان - شبنم جعفری
BiLSTM-Transformer: A Novel Hybrid Model for Accurate Prediction of Hand Joint Angles from sEMG Signals
Anita Sadat Sadati Rostami - Alireza Nazari - Mohammadreza Nayeri
Semi-Automatic Multi-Stage Artifact Removal in EEG During Subthreshold GVS: A Machine Learning Approach for Neuromodulation Studies
Mahdi Babaei - Sepideh Hajipour Sardouie - Martin Keung - Varsha Sreenivasan - Hanaa Diab - Maryam S. Mirian - Martin J. McKeown
How Geometric Asymmetry Impacts Aortic Valve Bioprosthesis Performance – A Finite Element Analysis
Reyhaneh Mosaferchi - Nasser Fatouraee
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2