0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Semi-Automatic Multi-Stage Artifact Removal in EEG During Subthreshold GVS: A Machine Learning Approach for Neuromodulation Studies
نویسندگان :
Mahdi Babaei
1
Sepideh Hajipour Sardouie
2
Martin Keung
3
Varsha Sreenivasan
4
Hanaa Diab
5
Maryam S. Mirian
6
Martin J. McKeown
7
1- دانشکده برقوکامپیوتر، دانشگاه تهران
2- University of British Columbia
3- University of British Columbia
4- University of British Columbia
5- University of British Columbia
6- University of British Columbia
7- University of British Columbia
کلمات کلیدی :
Parkinson’s disease،Galvanic vestibular stimulation،Neuromodulation،Artifact removal،EEG،biomarkers،Machine learning
چکیده :
Parkinson’s disease (PD) is characterized by widespread disruptions in neural oscillations and network dynamics, which can be captured through resting-state EEG biomarkers. Galvanic vestibular stimulation (GVS) has emerged as a promising noninvasive neuromodulation technique to modulate these neural patterns. However, EEG recordings during GVS are severely contaminated by high-amplitude stimulation artifacts, especially when exploring a wide range of stimulation protocols. In this study, we designed a data acquisition protocol involving 304 distinct subthreshold GVS waveforms, each with a unique temporal profile, to investigate their effects on brain activity. These stimuli induced strong artifacts in the EEG signal, particularly during the stimulation interval. To recover clean EEG signals, we developed a multi-stage preprocessing pipeline combining regression-based artifact suppression, canonical correlation analysis (CCA), and independent component analysis (ICA), supported by machine learning classifiers for automatic detection and removal of GVS, EOG, and EMG artifacts. We evaluated the effectiveness of this pipeline through classification of EEG signals from PD patients and healthy controls across three temporal segments: pre-stimulation (Pre-stim), stimulation (Stim), and post-stimulation (Post-stim). Despite the intense artifacts in the Stim interval, classification accuracy reached 82.46%, closely matching the performance in Pre-stim (85.06%) and Post-stim (91.67%) intervals. This confirms that the artifact removal process successfully preserved disease-relevant neural information even during active stimulation. Beyond classification, we conducted additional evaluations including temporal consistency analysis of biomarkers, correlation of model coefficients across intervals, and visual inspection of signal quality. These assessments demonstrated that the cleaned EEG signals retained physiologically meaningful patterns and stable biomarker profiles across time. Our findings show that EEG signals recorded during GVS can be reliably cleaned and analyzed, enabling rapid screening of stimulation protocols and paving the way for personalized neuromodulation strategies in Parkinson’s disease.
لیست مقالات
لیست مقالات بایگانی شده
طراحی و تحلیل المان محدود ایمپلنت ماژولار شخصیسازیشده مفصل ران مبتنی بر تصاویر CT : تمرکز بر عملکرد اتصال مخروطی تحت بارهای عملکردی
کبری پیرمحمدی - رسول عابدی - سعد رئیسی
مروری بر توسعه نرمافزار برای دستگاههای اینترنت اشیا
سجاد یوسفی - مریم پورنجف - ایدا اسدی
Benchmarking Class Activation Map Methods for Explainable Brain Hemorrhage Classification on Hemorica Dataset
Zahra Rafati - Mohamad Hoseyni - Javad Khoramdel - Amirhossein Nikoofard
Diagnostic and Classification Analysis of Retinal Diseases Using OCT Imaging: Focus on Diabetic Retinopathy and Overlap with Other Retinal Disorders
Fatemeh Reyhani - Yashar Amizadeh - Ata Jodeiri
Neuromuscular Coordination in Badminton Smashes: Validation of Musculoskeletal Models
Raheleh Tajik - Hamed Fadaei
تاثیر رویکرد حسابداری و مالی بر قضاوت وتصمیم گیری اثر خود هویتی سبز بر تغییر قصدخرید با نقش میانجی ارزش ادراکی و تعدیل کنندگی خودهمسویی ( مورد مطالعه :مشتریان فروشگاه اینترنتی جوپزی)
حسین بوذری
پلی از شبیهسازی به عمل: انقلاب بومی هوش مصنوعی در آموزش ایران
مهتاب کرمیانی - سیران معروفی
Improved Metric for Classification of Nearby Reaching Targets: A Distance-Weighted Accuracy Approach
Zahra Dayani - Ali Maleki - Ali Fallah
Smart Injectable Hydrogels: From In-Situ Gelation to On-Demand Drug Release in Regenerative Medicine
Leyla Mirzaei - Adnan Alizadeh Naeini - Neda Sadat Miragha Babaei
Toward Precision Psychiatry: Differentiating Depression and Psychosis Using EEG-Based Machine Learning Models
Vahid Asayesh - Mehdi Dehghani - Majid Torabi - Sepideh Akhtari-Khosroshahi - Maedeh Akhtari-Khosroshahi - Sebelan Daneshvar
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2