0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Semi-Automatic Multi-Stage Artifact Removal in EEG During Subthreshold GVS: A Machine Learning Approach for Neuromodulation Studies
نویسندگان :
Mahdi Babaei
1
Sepideh Hajipour Sardouie
2
Martin Keung
3
Varsha Sreenivasan
4
Hanaa Diab
5
Maryam S. Mirian
6
Martin J. McKeown
7
1- دانشکده برقوکامپیوتر، دانشگاه تهران
2- University of British Columbia
3- University of British Columbia
4- University of British Columbia
5- University of British Columbia
6- University of British Columbia
7- University of British Columbia
کلمات کلیدی :
Parkinson’s disease،Galvanic vestibular stimulation،Neuromodulation،Artifact removal،EEG،biomarkers،Machine learning
چکیده :
Parkinson’s disease (PD) is characterized by widespread disruptions in neural oscillations and network dynamics, which can be captured through resting-state EEG biomarkers. Galvanic vestibular stimulation (GVS) has emerged as a promising noninvasive neuromodulation technique to modulate these neural patterns. However, EEG recordings during GVS are severely contaminated by high-amplitude stimulation artifacts, especially when exploring a wide range of stimulation protocols. In this study, we designed a data acquisition protocol involving 304 distinct subthreshold GVS waveforms, each with a unique temporal profile, to investigate their effects on brain activity. These stimuli induced strong artifacts in the EEG signal, particularly during the stimulation interval. To recover clean EEG signals, we developed a multi-stage preprocessing pipeline combining regression-based artifact suppression, canonical correlation analysis (CCA), and independent component analysis (ICA), supported by machine learning classifiers for automatic detection and removal of GVS, EOG, and EMG artifacts. We evaluated the effectiveness of this pipeline through classification of EEG signals from PD patients and healthy controls across three temporal segments: pre-stimulation (Pre-stim), stimulation (Stim), and post-stimulation (Post-stim). Despite the intense artifacts in the Stim interval, classification accuracy reached 82.46%, closely matching the performance in Pre-stim (85.06%) and Post-stim (91.67%) intervals. This confirms that the artifact removal process successfully preserved disease-relevant neural information even during active stimulation. Beyond classification, we conducted additional evaluations including temporal consistency analysis of biomarkers, correlation of model coefficients across intervals, and visual inspection of signal quality. These assessments demonstrated that the cleaned EEG signals retained physiologically meaningful patterns and stable biomarker profiles across time. Our findings show that EEG signals recorded during GVS can be reliably cleaned and analyzed, enabling rapid screening of stimulation protocols and paving the way for personalized neuromodulation strategies in Parkinson’s disease.
لیست مقالات
لیست مقالات بایگانی شده
A Multi-Stage Ranking Pipeline for High-Precision Medical Information Retrieval
Asa Shabanian - Alireza Asl Nemati - Morteza Mohammadi Zanjireh
مقایسه تطبیقی پیشینه حاکمیت شرکتی در ایران و سایر کشورها
جمال خراسانی
بررسی کاربرد و چالش های هوش مصنوعی در مدیریت لجستیک بنادر
ایمان حق شناس - دامون رزمجویی
حکمرانی داده و هوش مصنوعی در اقتصاد دیجیتال: چالش ها، چارچوب ها و الزامات اخلاقی
علیرضا فولاد - ابوالفضل حسین زاده - علی عبدلی
حریم خصوصی در هوش مصنوعی:چالش ها و رویکردهای نوین با تاکید بر حوزه ی سلامت و مالی
سیمین عدل خواه
راهبرد تجاری و رفتار نامتقارن هزینهها با تاکید بر نقش توانایی مدیریتی شواهدی از شرکتهای پذیرفته شده بورس اوراق بهادار تهران و مسقط
علی انصاری - مهدی بشکوه
نگاهی جامع به تکنیک دلفی فازی و چگونگی بهکارگیری آن در پژوهشهای کیفی
قاسم رحیمی ریگی - محسن رشیدی باغی - مهنام ملایی
Development of a spiral microfluidic platform for predicting reduced mechanical damage in oocyte denudation
Ehsan Nabati - Maryam Saadatmand
Simulations of Body–Exoskeleton Interaction using OpenSim–MATLAB Interface
Mohammad-Reza Sayyed Noorani - Hesam Ghasemi Barghi - Shaghayegh Hassanzadeh Khanmiri
پیشبینی نمرات دروس دانشگاهی با استفاده از الگوریتم رگرسیون خطی در یادگیری ماشین
سجاد یوسفی - مریم پورنجف - هانیه شیری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1