0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Improved Metric for Classification of Nearby Reaching Targets: A Distance-Weighted Accuracy Approach
نویسندگان :
Zahra Dayani
1
Ali Maleki
2
Ali Fallah
3
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه سمنان
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
کلمات کلیدی :
reaching target classification،upper-limb prosthesis control،spatially weighted accuracy،performance evaluation metrics،misclassification cost،motor intention decoding
چکیده :
Accurate classification of reaching targets is critical for upper-limb prosthesis control, rehabilitation robotics, and human-robot interaction. Traditional classification metrics assume uniform misclassification costs, ignoring the spatial relationships between targets. This overlooks significant performance degradation: misclassifications in safety-critical zones (e.g., near obstacles or humans) or those impairing functional outcomes (e.g., failing to grasp a cup) can be far more detrimental than spatially adjacent misclassifications—despite equivalent cost in standard metrics—leading to elevated user workload or complete task failure. To address this, we propose a spatially informed weighted accuracy metric. Misclassification costs are assigned based on the normalized Euclidean distance between the intended target and the misclassified position, penalizing distant errors more heavily than proximal ones. We demonstrate the utility of this metric first using synthetic confusion matrices achieving identical standard accuracy but exhibiting distinct spatial error patterns (far, near and random misclassification error patterns). We then apply it to a real-world reaching target prediction task, comparing two classifiers (Quadratic Kernel SVM vs. Gaussian Kernel SVM) with equal standard accuracy (63%). The proposed metric effectively discriminates classifier performance by imposing higher penalties on distant misclassifications (86.3% for Quadratic Kernel SVM vs. 85.5% Gaussian Kernel SVM), revealing significant differences masked by standard accuracy. Crucially, the metric explicitly normalizes against the worst-case misclassification cost inherent to the target layout, providing a spatially aware assessment of classification performance essential for real-world deployment.
لیست مقالات
لیست مقالات بایگانی شده
حریم خصوصی کاربران در مدل های زبانی بزرگ
آرمان محبعلی - محمد عادلی نیا
Dynamic Connectivity Reveals Transformative Power of Neurofeedback in Brain Functional Networks
Kasra Momeni - Gholam- Ali Hossein-Zadeh
Multi-Objective Optimization of the Impeller of a mini Blood Pump: Balancing Outlet Pressure and Scalar Shear Stress
Reza Sahebi-Kuzeh kanan - Hanieh Niroomand-oscuii - Habib Badri Ghavifekr - Farzan Ghalichi
شناسایی ترس از ضرر در تصمیمات مالی با هوش مصنوعی
سیدسینا مرتضوی
Graph Convolutional Network–Based Surrogate Modeling for MRI-EEG Connectivity Analysis
Arshia Rezaei - Bahareh Abbaszadeh
Optimization of the Mechanical Properties of PVA/Gelatin Hydrogel Reinforced with Polycaprolactone Nanofibers Using the Finite Element Method
Mohadeseh Nazouri - Iman Zoljanahi Oskui - Hadi Taghizadeh
Alterations in Muscle Coordination During Different Gait Phases Following Knee Injury
Shaghayegh Hassanzadeh Khanmiri - Alireza Hashemi Oskouei - Peyvand Ghaderyan
بررسی چالش ها و راهکارهای مدیریت منابع در شبکه های بی سیم اینترنت اشیا با تمرکز بر محاسبات مه و لبه
سعیده نادری - سید حمید غفوری مهدی آباد
“Analyzing the Impact of Emerging Technologies on Supply Chain Sustainability: A Case Study of the Food Supply Chain in the Post-COVID Era”
Mahdi Rezaei - Salman Vali mohammadi
کاربردهای هوش مصنوعی و یادگیری عمیق در تشخیص و پیشبینی بیماریها
علی فرزین
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1