0% Complete
English
صفحه اصلی
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
Depression detection based on EEG signal analysis utilizing Inter-hemispheric Asymmetry and Correlation Dimension assessment
نویسندگان :
Amirreza Ahmadi
1
Saeid Yarmohammdi
2
Ali Zeraatkar
3
Reza Rostami
4
1- دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
2- دانشگاه آزاد اسلامی واحد تهران مرکزی
3- University of Victoria
4- دانشگاه تهران
کلمات کلیدی :
EEG،Major Depressive Disorder،Machine Learning،Correlation Dimension،Inter-hemispheric Asymmetry
چکیده :
Depressive disorders represent the most significant health risk among mental illnesses. Diagnosing the disability in the first stages can improve treatment efficiency and save a patient’s life due to its curable characteristic. Questionnaire-based diagnostic criteria have been required for traditional depression diagnoses. This study suggests objective criteria and processed EEG signals of 17 MDD patients and 20 normal subjects to detect depression. The power of absolute and relative frequency bands and the inter-hemispheric asymmetry were extracted as the linear features, and the correlation dimension was considered as the non-linear feature. Five machine-learning models were used to classify the data. 91.7% of accuracy score was derived when the selected features with all the mentioned machine learning classifiers were used. In addition, the ROC-AUC score and F1 score were utilized for higher trustable results. The LR classifier demonstrated strong performance, achieving a peak F1 score of 93.3% (when using 'Absolute + Relative' features) and a peak ROC-AUC score of 97.1% (when using 'Relative' features). The results of the T-test have shown the Alpha inter-hemispheric asymmetry as not a robust biomarker. Besides, the correlation dimension was probed as an auxiliary biomarker in channels F8 and C4 to be applied with the other characteristics; the value of the T-test of other bands was insignificant. This study reveals the importance of feature selection and states that using the selected features and our suggested machine-learning models could provide a valuable tool for detecting depression.
لیست مقالات
لیست مقالات بایگانی شده
Alterations of Brain Activation Maps in Adults with ADHD During Risk-Related Decision-Making Evidence from the Balloon Analogue Risk Task
Bahar Kermani - Mahdi Mirzaee Barzegar - Alireza Shirazinodeh
Detecting MDD based on EEG signals: Frontal or Temporal Region
Ali Zeraatkar - Amirreza Ahmadi - Saeed Yarmohammdi - Reza Rostami
مطالعه مروری طراحی و ساخت نانوحاملهای هوشمند برای تحویل هدفمند داروهای ضد سرطان به تومورهای لوزالمعده
ایدا احمدی - ابوبکر سوری - جعفرصادق مقدس
Multi-Modal Brain Tumor Diagnosis via Hybrid Vision Transformers and CNNs: A Deep Learning Approach
Alireza Haghighatjoo - Fatemeh Noori - Peyman Afshari Bijarbaneh - Seyed Amirhossein Mousavi
Electrochemical Biosensors Based on Polyaniline Nanostructures: An Analysis of Advances, Performance Challenges, and the Outlook for Smart Systems
Nasim Kharazminezhad - Ramez Pourahmad
هیدروژلهای نانوکامپوزیتی تقویتشده با نانوالیاف آرامید عاملدار شده: راهبردی نوآورانه در راستای گسترش ساختارهای پیشرفته مورد استفاده در پزشکی بازساختی
فرهاد اسمعیل زاده - شهره مشایخان - اکبر شجاعی
A Telemedicine Approach to Therapist-Free VR Exposure Therapy for Acrophobia: A pilot study
Arya Gholipoor Hanizi - Samaneh Minakhani - Poorya Gholipoor
تاثیر اختلاف قیمت خرید و فروش سهام و اهرم مالی بر مدیریت سود واقعی با تاکید بر نقش تعدیلی حاکمیت شرکتی
هادی اله قلیان - مهدی زینالی
The Technological Pillars of Smart Hospitals: A 2022–2025 Review of IoMT, Wearables/RTLS/RFID, Robotics (IoRT), and VR/AR
Ali Karaminejad - Naeme Kadkhodai Eliaderani - Sahar Jafari - Mahdi Jafari Asl
Evaluation and Comparison of Columnar Databases Cassandra, Kudu, HBase, Google Bigtable, MariaDB, and Greenplum for Fast and Accurate Data Processing
Sareh Gorgbandi - Nafiseh Osati
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1