0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Comparative Analysis of Machine Learning and Deep Learning Models for Epileptic Seizure Detection Using the CHB-MIT EEG Dataset
نویسندگان :
Pouya Taghipour Langrodi
1
Amirsadra Khodadadi
2
Mahtab Dastranj
3
Golnaz Baghdadi
4
1- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
2- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
3- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
4- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
کلمات کلیدی :
Epilepsy،Neural Networks،Seizure Detection،Electroencephalography،EEG،Deep Learning،Machine Learning،LSTM
چکیده :
Epilepsy is one of the most common neurological disorders that usually comes with sudden and unpredictable seizures and can severely affect the quality of life of patients. This study aims to design and evaluate different artificial approaches for automated seizure detection using EEG signals from the CHB-MIT dataset. This dataset contains 23 patients suffering from epileptic seizures, including boys and girls aged between 1.2 to 22 years old. Feature extraction was performed across time, frequency, and time-frequency domains. Eight classifiers were implemented in this study, including four machine learning algorithms (SVM, KNN, Decision Tree, and naïve Bayes) and four deep learning architectures (Artificial Neural Network, LSTM, TCN, and Transformer). The results demonstrated that the LSTM and TCN models outperformed other classifiers in detecting the preictal and ictal stages, achieving an accuracy of 96.0% and 97.3% with the sensitivity of 93.5% and 90.5%. Moreover, ANN and Transformer achieved 94.8% and 93.2% accuracy. In contrast, SVM, KNN, DT, and NB represented 93.1%, 92.4%, 81.2%, and 71.9% in accuracy. By preparing a uniform data preparation baseline for the CHB-MIT dataset, this study made an identical comparison between machine learning and deep learning models to propose the best approach for epileptic seizure detection.
لیست مقالات
لیست مقالات بایگانی شده
محاسبات کوانتومی در عمل: از تئوری تا پیادهسازی تجاری
محمد عادلی نیا
سواد مالی و رونق گردشگریT مطالعه موردی گردشگران شهر یزد
محمدعلی فیض پور - مهدیه پیروی - ریحانه بابائی - جمال برزگری خانقاه
Effective Connectivity Alterations within the Cortico–Basal Ganglia Circuit Associated with Motor Skill Learning
Mohammad Rezaei - Alireza Talesh Jafadideh - Fariba Bahrami - Shahzad Tahmasebi Boroujeni
Recent Advances and Open Challenges in Explainable AI for Deep Learning-based Recommender Systems
Narjes Badpar - Azita Shirazipour - Seyed Javad Mirabedini
مدیریت منابع انسانی با رویکرد هوش مصنوعی: مدیریت هوشمند داده محور
محمدرضا دلوی - مصطفی طغیانی پزوه
High-throughput microfluidic electroporation system using 3D-hydrodynamic focusing
Zohre Nazemi Dehkordi - Ali Abouei Mehrizi
بهینهسازی ساختار نانوالیافی داربست پلیمری با دندریمر پلی آمیدو آمین برای استفاده در مهندسی بافت عصب
حمید جبار
Chondrocyte-Imprinted Substrates: Promoting MSC Chondrogenesis and Regulating Inflammatory Gene Expression
Parisa Madani - Sara Derhanbakhsh - Nasrin Salehi - Farzaneh Safshekan - Javad Mohammadi - Shahin Bonakdar
تهدیدهای حریم خصوصی در شهرهای هوشمند
محمد امیری نسب - محمد عادلی نیا
بررسی تأثیر مالکیت کنترل کننده بر رقابت در بازار محصول شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
اسماعیل محبی کندسری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2