0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Multi-View 2.5D Attention U-Net with 3D Fusion for Efficient Stroke Lesion Segmentation from T1-Weighted MRI
نویسندگان :
Fatemeh Salahshourinejad
1
Kamran Kazemi
2
Negar Noorizadeh
3
Mohammad Sadegh Helfroush
4
Ardalan Aarabi
5
1- دانشگاه صنعتی شیراز
2- دانشگاه صنعتی شیراز
3- University of Tennessee Health Science Center
4- دانشگاه صنعتی شیراز
5- University of Picardy Jules Verne
کلمات کلیدی :
Stroke Lesion،MRI،2.5D Segmentation،Deep Learning،Attention mechanism،Multi-view
چکیده :
Accurate segmentation of stroke lesions from Magnetic Resonance Imaging (MRI) scans is critical for clinical decision-making and patient prognosis. However, stroke lesion segmentation from mono-spectral MRI such as T1-weighted (T1w) images suffers from similar gray level characteristics of brain tissues and heterogeneity of lesion properties (e.g., shape and size). Deep learning has become the standard approach for medical image segmentation; however, 2D models lose inter-slice context and 3D models face computational complexity. In this paper, we proposed a multi-view 2.5D model that employed three 2D U-Nets for intra-slice lesion segmentation across axial, coronal, and sagittal views, followed by a 3D convolutional neural network (CNN) to integrate the outputs. The 2D U-Nets incorporated residual blocks in the encoder–decoder and attention blocks in the skip connections, while the 3D CNN with attention mechanisms produced the final segmentation. The proposed model was evaluated on the ATLAS V2.0 dataset for stroke lesion segmentation, achieving a mean Dice score of 0.64±0.27outperforming 2D approaches and comparable with 3D models, while requiring fewer parameters, making it practical for resource-constrained settings.
لیست مقالات
لیست مقالات بایگانی شده
HEALTH: Hyperbolic Embedding and Acoustic-based Learning for Topological Hierarchies in Parkinson’s Disease
Saghar Shafaati - S. Hossein Erfani
Comparative Evaluation of Deep Learning Architectures for Static American Sign Language Recognition
Shamim Najafi - Sedigheh Dehghani
Multi-transform diagnostic analysis based on gradient-based features for breast cancer detection in thermal imaging
Ainaz Daneshdoust - Sedigheh Ghofrani - Mahdi Eslami - Iman Ahanian
کاربرد هوش مصنوعی در ارتقای امنیت اینترنت اشیاء: از الگوریتمهای یادگیری عمیق تا استراتژیهای سازمانی
علی غلام نتاج - محمدعرفان رحمانیان کوشککی - امیدرضا حمیدی نیا - عباسعلی میرزایی فرد
Assessing the Risk of Musculoskeletal Injuries of Workers at the Warehousing Workstation of Iran Tire Company
Mahshad Nazari Jeirani - Amirhossein Mohammadzadeh - Seyedeh Shokouh Azam Mirdamadi - Mohadeseh Sadat Shahangian - Navid Arjmand
Application of machine learning approach for prediction the heat capacity of amine
Aboozar Khajeh
Numerical investigation of the effectiveness of cryosurgery on a liver tumor
Taha Samiazar - Mahkame Sharbatdar
Electrochemical Biosensors Based on Polyaniline Nanostructures: An Analysis of Advances, Performance Challenges, and the Outlook for Smart Systems
Nasim Kharazminezhad - Ramez Pourahmad
Gravity-Directed Growth of ZnO Nanorods: Morphological Control via Chemical Bath Deposition
Masoud Ghashami - Melisa Daryayi - Mohammad Abdolahad
هوش مصنوعی و تحول مدیریت استعداد: گذر از رویکرد های سنتی به عصر تکنولوژی
مهسا کریمی دستنائی - مهدی ندری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1