0% Complete
فارسی
Home
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
Depression detection based on EEG signal analysis utilizing Inter-hemispheric Asymmetry and Correlation Dimension assessment
Authors :
Amirreza Ahmadi
1
Saeid Yarmohammdi
2
Ali Zeraatkar
3
Reza Rostami
4
1- دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
2- دانشگاه آزاد اسلامی واحد تهران مرکزی
3- University of Victoria
4- دانشگاه تهران
Keywords :
EEG،Major Depressive Disorder،Machine Learning،Correlation Dimension،Inter-hemispheric Asymmetry
Abstract :
Depressive disorders represent the most significant health risk among mental illnesses. Diagnosing the disability in the first stages can improve treatment efficiency and save a patient’s life due to its curable characteristic. Questionnaire-based diagnostic criteria have been required for traditional depression diagnoses. This study suggests objective criteria and processed EEG signals of 17 MDD patients and 20 normal subjects to detect depression. The power of absolute and relative frequency bands and the inter-hemispheric asymmetry were extracted as the linear features, and the correlation dimension was considered as the non-linear feature. Five machine-learning models were used to classify the data. 91.7% of accuracy score was derived when the selected features with all the mentioned machine learning classifiers were used. In addition, the ROC-AUC score and F1 score were utilized for higher trustable results. The LR classifier demonstrated strong performance, achieving a peak F1 score of 93.3% (when using 'Absolute + Relative' features) and a peak ROC-AUC score of 97.1% (when using 'Relative' features). The results of the T-test have shown the Alpha inter-hemispheric asymmetry as not a robust biomarker. Besides, the correlation dimension was probed as an auxiliary biomarker in channels F8 and C4 to be applied with the other characteristics; the value of the T-test of other bands was insignificant. This study reveals the importance of feature selection and states that using the selected features and our suggested machine-learning models could provide a valuable tool for detecting depression.
Papers List
List of archived papers
چالش ها و راهکارهای استفاده از حسابداری منابع انسانی در عصر دیجیتال
پگاه نکواصل - حانیه سرافراز
Investigating the Self-optimizing nnU-NetV2 for Kidney Tumor Segmentation: Application to the KiTS23 Dataset
Sanam Doostinia - Masoud Noroozi - Mohammad Saber Azimi - Jafar Majidpour - Hossein Arabi
Feature-Conditioned WGAN for Generating Alzheimer’s EEG: Enabling GAN-Based Synthesis Under Data Scarcity
Parsa Bahramsari - Alireza Taheri
شناسایی قدرت پسورد با استفاده از روشهای یادگیری ماشین دسته جمعی
مهناز درودی - سیدحسن مرتضوی زارچ - فاطمه زارع مهرجردی - محسن سرداری زارچی
Innovative Biomimetic Skin Repair Strategies Utilizing Barium Titanate
Hossein Norouzi Bazmin Abadi - Zahra Mohammadi
بهبود عملکرد سیستمهای شناسایی بدافزار با تلفیق شبکههای عصبی کانولوشن و الگوریتم جنگل تصادفی
بهزاد شاه پسندی - مجید مزینانی
Deep Learning Approaches for Alzheimer’s Disease Diagnosis: A Comprehensive Review
Mahdi Jafari Asl - Saba Haji Molla Rabie
Comparative Analysis of Time-Frequency Representations for Pediatric Respiratory Sound Classification Using Deep Learning
Ghazaleh Shiri - Hanieh Bahrami - Alireza Fallahi
ایجاد یک استراتژی پایدار برای حاکمیت شرکتی یکپارچه مبتنی بر عملکرد پایداری
رعنا شهد آور - ابوالفضل بابایی لک لر - حسین قهرمانی
A Quantitative Approach to Assess Rhus coriaria Nanophytosomes in Ketamine-Induced Liver Injury
Narjes Amin - Akbar Hajizadeh Moghadam - Amin Mohammad Mohammadi - Kimia Mozahheb Yousefi - Fereshteh Mir Mohammadrezaei - Sedigheh Khanjani Jelodar
more
Samin Hamayesh - Version 42.5.2