0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
نویسندگان :
Ehsan Karami
1
Hamid Soltanian-Zadeh
2
1- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
2- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
کلمات کلیدی :
knee osteoarthritis،deep learning،medical image analysis،MRI،total knee replacement prediction،model generalization
چکیده :
Knee osteoarthritis (KOA) is a common joint disease that causes pain and mobility issues. While MRI-based deep learning models have demonstrated superior performance in predicting total knee replacement (TKR) and disease progression, their generalizability remains challenging, particularly when applied to imaging data from different sources. In this study, we show that replacing batch normalization with instance normalization, using data augmentation, and applying contrastive loss improves generalization. For training and evaluation, we used MRI data from the Osteoarthritis Initiative (OAI) database, considering sagittal fat-suppressed intermediate-weighted turbo spin-echo (FS-IW-TSE) images as the source domain and sagittal fat-suppressed three-dimensional (3D) dual-echo in steady state (DESS) images as the target domain. The results demonstrated a statistically significant improvement in classification metrics across both domains by replacing batch normalization with instance normalization in the baseline model, generating augmented input views using the Global Intensity Non-linear (GIN) augmentation method, and incorporating a supervised contrastive loss alongside the classification loss to align representations of samples with the same label. In the source domain, this approach achieved an accuracy of 74.12 ± 2.90, an F1 score of 74.57 ± 3.33, and a ROC AUC of 80.65 ± 2.83, outperforming the baseline model, which scored 71.29 ± 4.43, 69.76 ± 4.58, and 77.79 ± 4.66, respectively. In the target domain, the method achieved an accuracy of 70.04 ± 2.49, F1 score of 67.30 ± 3.57, and ROC AUC of 78.12 ± 1.97, compared to the baseline’s 52.87 ± 3.17, 18.98 ± 16.89, and 59.33 ± 6.20. The GIN method with contrastive loss performed better than all evaluated single-source domain generalization methods when using 3D instance normalization. Comparing GIN with and without contrastive loss (for both normalization types) showed that adding contrastive loss consistently led to better performance.
لیست مقالات
لیست مقالات بایگانی شده
ارزیابی کارایی روشهای اصلاح پراکندگی در تصویربرداری SPECT قلب همزمان دو ایزوتوپی
بهاره جودی ثمرین - مهسا نوری اصل
آلیاژهای حافظهدار نیکل-تیتانیم در مهندسی پزشکی: نوآوریها، چالشها و کاربردهای پزشکی
مهدیه سلطانعلی پور - میلاد بدر - جعفر خلیل علافی
Mechanical properties of cancer cells as potential predictive biomarkers
Sayed Reza Ramezani - Afsaneh Mojra
Robust Speckle Noise Reduction in IVUS Imaging: Advancing Autoencoders and Non-Local Means with Particle Swarm Optimization
Shirin Ashtari Tondashti - Navid Adib - Mehran Alyali - Mahdis Yaghoubi - Seyed Kamaledin Setarehdan
OpenSim Musculoskeletal Modeling Framework for sEMG-Based Knee Torque Estimation
Mohammad-Reza Sayyed Noorani - Mariya A. Vaziry - Seyed Alireza MirTajeddini
Unsupervised Gait Anomaly Detection Using Generative Adversarial Networks: A Feasibility Study
Seyed Hooman Hosseini-Zahraei - Ali Chaibakhsh
تاثیر استفاده از هوش مصنوعی بر تصمیمات مالی شرکتهای بیمه
مسعود سبزچی دهخوارقانی - میترا زابلی پیله رود
کاربرد هوش مصنوعی در ارتقای امنیت اینترنت اشیاء: از الگوریتمهای یادگیری عمیق تا استراتژیهای سازمانی
علی غلام نتاج - محمدعرفان رحمانیان کوشککی - امیدرضا حمیدی نیا - عباسعلی میرزایی فرد
A vortex-promoting cross-junction microchannel for efficient hydroporation in immunotherapy applications
Soheil Mahdavi - Zohre Nazemi Dehkordi - Ali Abouei Mehrizi
Preparation and Characterization of Silicone Hydrogel Contact Lenses Based on TRIS-HEMA
Mahdiyeh Sedghi - Hakimeh Ghaleh - Sina Hajibababzadeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1