0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Development of an Explainable Random Forest-Based Algorithm for EEG-Based Sleep–Wake Classification Toward Sleep Apnea Detection
نویسندگان :
Pargol Sharifi
1
Mohammad Fakharzadeh
2
1- دانشگاه صنعتی شریف، تهران، ایران
2- دانشگاه صنعتی شریف، تهران، ایران
کلمات کلیدی :
Polysomnography،EEG signal،Sleep stage classification،Sleep apnea detection،Random Forest،Machine learning
چکیده :
Automatic sleep stage classification allows separating sleep stages without human experts. Many existing algorithms rely on multi-channel physiological signals such as EEG, EOG, and EMG. However, because of the complex equipment and required expertise, these methods usually need specialized laboratory settings. Therefore, developing a high-accuracy classification algorithm using a single signal remains a key challenge in sleep research, as it could enable portable devices and home-based sleep monitoring systems. Sleep stage classification is essential for detecting and managing sleep disorders such as sleep apnea. This study presents an optimized and clinically interpretable pipeline for sleep stage classification and apnea detection using EEG signals. The proposed approach is based on a simple, interpretable Random Forest framework and is intended to serve as a valuable tool for both clinical and research-oriented applications in sleep apnea detection. It integrates optimized preprocessing, data cleaning, algorithmic optimization, and class balancing to enhance accuracy and interpretability. Notably, our optimized Random Forest pipeline outperforms more complex deep-learning models, especially on 6-class sleep staging, sleep–wake discrimination and Apnea detection. The proposed method achieved accuracy, sensitivity, and specificity of 99.68%, 97.59%, and 99.30%, respectively, for distinguishing sleep from wakefulness, and 87.18%, 85.19%, and 89.16%, respectively, for apnea detection.
لیست مقالات
لیست مقالات بایگانی شده
Patient-Specific TMJ Implants: A Finite Element Study on Placement and Material Effects
Aryana Tavakoulnia - Mohadese Rajaeirad - Nima Jamshidi - Sandipan Roy
Electrochemical Biosensors Based on Polyaniline Nanostructures: An Analysis of Advances, Performance Challenges, and the Outlook for Smart Systems
Nasim Kharazminezhad - Ramez Pourahmad
Modeling Attention Performance Across Female Reproductive Aging Using Logistic Regression
Zahra Zehtabi - Leila Mehdizadeh Fanid - Pedram Salehpoor - Mahdi Jafari Asl
تاثیر هوش مصنوعی در کیفیت خدمات آنلاین بانکی
بهارک یادگار جمشیدی - زهرا شرقی
تحلیل پارامترهای کلیدی مؤثر در شکست پچ چسبنده ترمیمی تاندون روتاتورکاف با مدلسازی اجزای محدود
شقایق راست قلم - آزاده قوچانی - محسن صراف بید آباد
Deep Learning and Fuzzy Entropy in Parkinson's Diagnosis: a Framework Based on Task-Based EEG Signals
Amir Hossein Tajarrod - Tania Hossein Khani - َAsghar Zarei - Mousa Shamsi
محاسبه نیروی عضلانی اندام تحتانی و نیروی تماسی مفصل زانو در بیماران مبتلا به استئوآرتریت زانو
مجتبی صفری - محمد نجفی آشتیانی - فاطمه السادات علوی
Edge-Based Personalized Information Retrieval for Mobile Users Leveraging Federated Learning
Ebrahim Ebrahimi - Hamed Nazarian - Amin Mohammadi - Morteza Mohammadi zanjireh
نقشه راه آموزش هوش مصنوعی در ایران: از بومیسازی تا جهانیسازی
علی غلام نتاج - محمد عرفان رحمانیان کوشککی - امیدرضا حمیدی نیا - محمدمهدی افتخاری
EEG-based Schizophrenia Detection Using Spectral, Entropy, and Graph Connectivity Features with Machine Learning
Nazila Ahmadi Daryakenari - Seyed Kamaledin Setarehdan
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1