0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Robust Glucose Level Classification from NIR-Based PPG Using Morphological Features
نویسندگان :
Arian Mesforoosh Mashhad
1
Yeganeh Binafar
2
Mohammad Reza Akbarzadeh Totonchi
3
1- دانشگاه فردوسی مشهد
2- دانشگاه فردوسی مشهد
3- دانشگاه فردوسی مشهد
کلمات کلیدی :
Diabetes classification،Photoplethysmography (PPG)،Near-infrared spectroscopy (NIRS)،Biomedical signal processing،Morphological features،Machine learning
چکیده :
Diabetes is a primary global health concern, and noninvasive monitoring could be critical for its early detection and management. This study presents a noninvasive approach to blood glucose classification using photoplethysmography (PPG) signal and machine learning approaches. However, PPG signals are biological signals that, similar to their counterparts, suffer from considerable environmental noise and patient-to-patient variability. Here, we propose a morphology-based framework for robust PPG-based Glucose classification. For this purpose, a custom-designed optical finger sensor operating at 940 nm was used to record two independent 30 s signals from fasting participants, including both healthy and diabetic subjects. After excluding low-quality signals, the final dataset included 159 subjects. Signals also underwent multi-stage filtering, normalization, and cycle-based template-matching quality control before feature extraction. We then employed the proposed framework to identify consistent cycle-shape patterns within each acquisition and verify their stability across repeated recordings. Two feature sets were compared including the cycle-based morphological and global signal-based features. Correlation analysis showed that morphology-based features were more robust and reproducible, while global signal features were less reliable under short-duration acquisitions. Multiple classifiers were tested, with Gradient Boosting achieving the highest accuracy (93.75%) using morphological features, compared to 84.38% with non-morphological features. These findings suggest that morphology-based signal analysis provides robust and salient features from short PPG signals, enabling practical and accurate noninvasive diabetes screening.
لیست مقالات
لیست مقالات بایگانی شده
Personalized EEG Source Estimation in a Shape Drawing Task
Zakieh Hassanzadeh - Melisa Daryayi - Navid Entezari - Fariba Bahrami
بررسی اثرات نامتقارن سرریز تلاطم با هوش مصنوعی بین بازار رمز پولها و محتوای دیجیتال ، بازار طلا وبازار نفت : با رویکرد MGARCH
حسین بوذری
بررسی جامع تکنیک های مستندسازی هوش مصنوعی در کسب و کار
سعید انور خطیبی
نقش مالکیت دولتی در ارتباط میان معیارهای غیرمالی و ریسک سقوط قیمت سهام
اکبر کنعانی - زهره نوروزی مرادلو - سیما فرزانه خلیفه لو - جابر نوشته زیوه
تأثیر گردش سیاسی بر رفتار گزارشگری حسابرس با تأکید بر اندازه موسسه حسابرسی
فریور بلندنظر - مرتضی خانلاری
چیستی و چگونگی شناسایی انجمنها در شبکههای اجتماعی
غزاله حاجی آبادی - مجید عبدالرزاق نژاد
In Silico Evaluation of PAMAM Dendrimers as Nanocarriers for Targeted Carmustine Delivery in Glioma Therapy
Noora Shaerzadeh - Maryam Azimzadeh Irani - Yeganeh Abbasian
EEG Graph Construction: A Comparative Analysis for Classification Application
Kiana Kalantari - Mohammad Bagher Shamsollahi
DDQN-Learning of Hill-Type Musculoskeletal Arm Model for Elbow Motor Control
Mohammad-Reza Sayyed Noorani - Abbas Jafarpour Mahalleh - Kimiya Khojand
چالش های تحول دیجیتال و هوش مصنوعی در صنعت با رویکرد توسعه پایدار
رضا صبوری - ناصر فقهی فرهمند - سلیمان ایران زاده
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2