0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Robust Glucose Level Classification from NIR-Based PPG Using Morphological Features
نویسندگان :
Arian Mesforoosh Mashhad
1
Yeganeh Binafar
2
Mohammad Reza Akbarzadeh Totonchi
3
1- دانشگاه فردوسی مشهد
2- دانشگاه فردوسی مشهد
3- دانشگاه فردوسی مشهد
کلمات کلیدی :
Diabetes classification،Photoplethysmography (PPG)،Near-infrared spectroscopy (NIRS)،Biomedical signal processing،Morphological features،Machine learning
چکیده :
Diabetes is a primary global health concern, and noninvasive monitoring could be critical for its early detection and management. This study presents a noninvasive approach to blood glucose classification using photoplethysmography (PPG) signal and machine learning approaches. However, PPG signals are biological signals that, similar to their counterparts, suffer from considerable environmental noise and patient-to-patient variability. Here, we propose a morphology-based framework for robust PPG-based Glucose classification. For this purpose, a custom-designed optical finger sensor operating at 940 nm was used to record two independent 30 s signals from fasting participants, including both healthy and diabetic subjects. After excluding low-quality signals, the final dataset included 159 subjects. Signals also underwent multi-stage filtering, normalization, and cycle-based template-matching quality control before feature extraction. We then employed the proposed framework to identify consistent cycle-shape patterns within each acquisition and verify their stability across repeated recordings. Two feature sets were compared including the cycle-based morphological and global signal-based features. Correlation analysis showed that morphology-based features were more robust and reproducible, while global signal features were less reliable under short-duration acquisitions. Multiple classifiers were tested, with Gradient Boosting achieving the highest accuracy (93.75%) using morphological features, compared to 84.38% with non-morphological features. These findings suggest that morphology-based signal analysis provides robust and salient features from short PPG signals, enabling practical and accurate noninvasive diabetes screening.
لیست مقالات
لیست مقالات بایگانی شده
Shape Memory Polymer-Based Scaffolds for Bone Tissue Engineering
Farzad Fereidani Mohammadi - Zahra Mohammadi
پیشرفتهای اخیر در ماشینهای بردار پشتیبان کوانتومی: چشماندازی برای پردازشهای کوانتومی
محمد عادلی نیا
Modifying the electricity consumption pattern by designing an intelligent machine learning model with the XG Boost algorithm
Raha Pakzad
Physics-Informed Neural Networks for Cardiac Flow Estimation in 2D Simplified Human Right Ventricular Geometry
Mohammadmahdi Sekhavatpisheh - Nasser Fatouraee
استفاده از هوش مصنوعی در بهینهسازی حسابداری و حسابرسی نهادهای دولتی
سعید نوری - مرتضی گل محمدی
ارتباط بین عملکرد پایداری و کارایی سرمایهگذاری با نقش تعدیلگری ارزش شرکت
مهدی زینالی - محمد کیانی - سونیا کیوان بد
Designing a Machine Learning Model with LSTM and CNNs to Make the Quality Control Process of Liquefied Gas Tankers Intelligent
Raha Pakzad
نقش حسابداری مدیریت استراتژیک در تصمیمگیری استراتژیک
محمدرضا مهربان پور - جواد محمدی مهر
The role of artificial intelligence in linking data-driven human resources with sustainable business branding
Baharak Yadegar Jamshidi - Hossein Bodaghi Khajeh Noubar
Fixed-Frequency Impedimetric Detection of Sickle Cells Using Interdigitated Electrodes
َArezoo Savlani - Mobina Ghanbari - Mohammadjavad Bouloorchi Tabalvandi - Majid Badieirostami
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1