0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
نویسندگان :
Mahdiyeh Tofighi Milani
1
Sina Shamekhi
2
Asghar Zarei
3
1- دانشگاه صنعتی تبریز(سهند)
2- دانشگاه صنعتی تبریز(سهند)
3- دانشگاه صنعتی تبریز(سهند)
کلمات کلیدی :
Schizophrenia،Electroencephalogram،Machine Learning،Fuzzy Entropy
چکیده :
Schizophrenia is a severe mental disorder that frequently causes the patient to have numerous problems with normal daily activities, and still, doctors struggle to accurately diagnose it in the early stages. Brain imaging and clinical tests, even if they are sometimes capable of achieving the goal, are often a lengthy procedure, expensive, and can also be somewhat uncomfortable for patients. New scientific work seeks to come up with a less intrusive and cheaper method, which will include the use of the EEG signal and the ML algorithm in identifying abnormalities of the schizophrenic patients as compared with the healthy ones. At first, the Fast Fourier Transform (FFT) was used to decompose the EEG signal into multiple sub-bands of frequency, and it was decided to extract a set of features from each sub-band, where the features included the statistical and nonlinear features - kurtosis, skewness, Shannon entropy, fuzzy entropy, mobility, and complexity. Subsequently, the ReliefF algorithm was utilized for the selection of features, and the significant features thus extracted were used as input for a number of classifiers, including the k-nearest neighbors (KNN), linear support vector machine (SVM), and the random forest (RF), to name but a few. The functional capabilities of the designed system were verified on a genuine EEG dataset that contains recorded signals from teenage schizophrenia patients as well as from healthy subjects. Random forest was identified as the most effective one among the various implemented classifiers, as it achieved the highest performance with an average accuracy of 97.69%. Also, fuzzy entropy was identified to be a constantly discriminative feature, implying it could serve as a sound biomarker for the differentiation of schizophrenia from healthy subjects by utilizing EEG signals.
لیست مقالات
لیست مقالات بایگانی شده
ارائه یک مدل ARIMAX بهبود یافته برای پیش بینی قیمت سهام
عارفه عمیدیان - امیرمسعود عمیدیان - مینا مسعودی فر
The Effects of Levodopa and Visual Information on The Complexity of Postural Control in Parkinson’s Disease Patients With and Without Freezing of Gait Through a Multiscale Entropy Approach
Kiarash Banan Motarjem - َAmirhassan Khalouzadeh Mobarakeh - Aria Behroozi - Elham Shirzad Araghi
شیوه های حسابداری منابع انسانی و تاثیر آنها بر عملکرد مدیریت
مرضیه ساداتی
بررسی رابطه بین توانایی مدیران و تاخیر قیمت سهام شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران
حمیدرضا عزیزی
انتخاب و ترکیب خودکار وظیفه در یادگیری چند وظیفهای
امیر خاکپور
Improved Metric for Classification of Nearby Reaching Targets: A Distance-Weighted Accuracy Approach
Zahra Dayani - Ali Maleki - Ali Fallah
An AI-Assisted Approach to Patient-specific 3D Modeling and Stress Analysis of the Temporomandibular Joint from CBCT Images
MOHAMMAD Akhlaghi - Masoud Shariat panahi - Sina Salehpour - Morad Karimpour - Hadi Ghatan Kashani
بررسی تأثیر ارائه صورت تغییرات حقوق مالکانه بر کیفیت اطلاعات حسابداری
سید علی میرنژاد - جمال برزگری خانقاه - فاطمه زه تابیان یزدی
Gait Retraining of Musculoskeletal Patients Using Deep Learning Techniques
Kourosh Alimadadi - Masoud Shariat Panahi - Morad Karimpour - Hadi Ghattan Kashani
شناسایی عوامل موثر بر تمایل به فرار مالیاتی با در نظر گرفتن عوامل فرهنگی با رویکرد تحلیل مضمون
نیما صدری نوبر زاد - پریسا صدری نوبر زاد
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1